
WMLScriptEase: Integration SDK 1

WMLScriptEase Manual

WMLScriptEase:ISDK/C version 0.90

Copyright © 1998,1999 Nombas Incorporated. All rights reserved. No part of this manual may be copied without written

permission by Nombas Incorporated. If you would like to request permission to use a Nombas logo, or any section of

this manual, please mail your request to:

Nombas Incorporated

64 Salem Street

Medford, MA 02155

USA

http://www.nombas.com/us/

All Nombas products are trademarks or registered trademarks of Nombas Incorporated. Other brand names are

trad ema rks o r reg iste red trad ema rks o r the ir re spe ctiv e ho lde rs. W indows , as u sed in th is ma nua l, re fers to M icro soft 's

implementation of a windows system.

WMLScriptEase: Integration SDK 2

WMLScriptEase: Integration SDK

Thank you for using Nombas' WMLScriptEase. The Integration SDK allows you to compile and execute WMLScript

scripts from within your C or C++ application. Written entirely in C, the WMLScriptEase ISDK p rovides you with a

collection of function calls for working with WMLScripts, including the ability to write wrapper functions that allow

scripts to call directly into your application. This manual will describe how to add WMLS cript capability to your

application, perform co mmon scripting tasks, and write these wra pper functions.

This document will refer to the Wireless Application Protocol (WAP)Language Specification as provided by the WAP

Forum. C opies of this, an d other W AP do cuments are freely available at

http://www.wapforum.com/docs/techincal.htm.

Installation and Setup

The WM LScript distribution consists of three source code directories which you are free to put anywhere on your

system that you like. These directories are named shared, compile, and interp. The rem aining directo ries contain

documentation, sam ple makefiles, and test scripts. When you unpack the distribution, feel free to mo ve it to the most

convenien t place on yo ur hard driv e; you are no t stuck with keep ing it wherever it is now.

When you have finishe d placing it, you must determ ine the directo ry that contains the accomp anying sourc e files. We

will label this direc tory WML. For instance, this file will be referred to as WML\doc\wmlscript.pdf. On Unix systems,

directories are separated b y a forward slash, not a backslash so the e quivalent is WML/doc/wmlscript.pdf

The root directo ry to which you installed this code will have make files (or targets or p rojects) for some of the mo st

common compiler environments. The following instructions are helpful for building with the supplied build files or for

creating your own.

Compiler sample

You may wish to build the sample compiler. It is a command-line application that takes a script file (.ws extension),

compiles it, and writes the output to the same filename except with a .wsb extension. Sin ce the outp ut file is complete ly

portable, yo u can com pile it on a differe nt machine fro m where yo u want to interp ret it. The file

WML/demos/compile/compile.c has the sample main() that does this compiling; you may want to look at it to see

working code when you go to integrate the ISDK into your application (described later).

To compile the wml compiler application, start a new target in your favorite C compiler environment. Predefine the

macro WML_COMPILER. You will also need to add the directories WML/shared and WML/interp to the include paths

the compiler will search. The resulting executable can be run by providing the name of the file you wish to compile as

its only parameter.

Interpreter sample

A sample interpreter ca n be built similar ly to the comp iler. Howe ver, the interpr eter is more p latform spec ific, as it

needs to know ho w to read various U RL formats for instance. Yo u may define the macros __WML_WIN32__ or

__WML_UNIX__ to compile on those systems, or you may define none and implement the changes discussed in the

'Integrating with you r applicatio n' section of this ma nual to build a version for a sp ecial environ ment.

When building for one of the systems described above, build the target much like you would for the compiler sample.

Define the macro for your operating system and define WML_INTERP (instead of WML_COMPILER). Compile and link the

application .

WMLScriptEase: Integration SDK 3

Compiling and Interpreting sample scripts

Now that you have the sample interpreter available, you can use it to run some of the sample scripts included with the

distribution. The directory tree tests contains a number of scripts. If you have built the compiler, the sample interpreter

application uses the rule that main() is the function to be run. In a typical WMLScript application you specify both the

script module and the function to be run.

The on ly paramete r to be given is the URL of the sample . This can b e a relative U RL in which it is relative to

file://./; in effect, you can type a filename as the parameter such as samples\lang\wrldtest.wsb. Or you can

give a complete U RL such as file://c/wml/myscript.wsb or http://localhost/scripts/script.wsb.

Integrating with your application

The process to add W MLScriptEase ISDK to your application is straightforward. You need to tell your compiler where

to find the accompanying header files. On most IDEs, there will be an option to specify additional include paths. On

unix compilers, you specify the directories using the -I command line switch, which you should add to your CFLAGS

macro. The directories to add are WML/shared and WML/interp. You will want to add both regardless of which

routines your application will call.

Next, you n eed to ad d the sourc e files to your ap plication. T he WM L interpreter or comp iler will be com piled direc tly

into your ap plication. Y ou may nee d to edit som e of the sourc e files to correc tly interact with your a pplication. T his

process is described later in this manual. All of the C files in the 'shared' directory must be added. The C files in the

other two d irectories nee d to be ad ded if you will b e doing the c orrespo nding action s; if you are com piling, you will

need those in WML/compile and likewise if you wish to execute scripts, you will add those in WML/interp.

Your application is no w ready to make any calls to W MLScriptE ase routines.

Using the WMLScriptEase API

The W MLSc riptEase A PI consists o f two basic ac tions, comp iling a script and executing a sc ript.

Compiling

You compile a script using the wsCompile() call. Its prototype is this:

 ubyte *wsCompile(char *filename,wschar *buf,size_t *size);

As you can see, you pass three param eters. 'filename' is the not an actual file tha t is read, but rathe r it is the file that is

reported in any error messages. You pass whatever text string you want to appear in any error messages. The second

parameter, which is either characters or unicode characters depending on your build, is the actual text of the script to be

compiled. It should be terminated by a \0 character. Finally, the last parameter is an output only parameter. The return

from this function is NULL if the compile failed. In this case an error message describing the problem will have been

generated. Otherwise, a buffer is returned. It contains the bytes that make up the standard WMLScript output format for

this script. The 'size' parameter is filled in with the length of this buffer in bytes. You can store this script however you

like, such as by writing it to a file. The output is usable by any WMLScript interpreter that follows the WMLScript

specification (see the W MLSc ript Langua ge Specifica tion.)

When you a re finished with the returned buffer, it must be freed. An A PI call is provided to do this. Its prototype is:

 void wsFreeBytecodes(ubyte *buf,size_t size);

You pass it the return from the wsCompile() call along with the 'size' output parameter from that call. If the return

from wsCompile() was NULL, you should n ot make this ca ll.

One typical case when using this call is to store the bytecodes in a file which you then interpret using the file:// url

syntax described below. You can also store a file containing the bytecodes on a web server and retrieve it using the

http:// url syntax. However, when implementing WMLScriptEase on an embedded system, you may have no web or

file access. In this case, you will store the bytecodes in some way of your choosing. You will need to modify the

interpreter's url parser to be able to access these stored bytecodes. All of this is described later.

WMLScriptEase: Integration SDK 4

Interpeting

Interpreting a script is more complex. You have a number of options to do this interpreting. First, you need a context

from which to interpret. A co ntext is a data struc ture used inter nally by the W MLSc riptEase inte rpreter. Y ou can cre ate

as many co ntexts as you like. E ach one is ind epende nt from the oth ers and can interpret one script at a time. T he call to

make a new contex t is prototyped as follows:

 wsContext wsNewContext();

The retur ned value is a magic coo kie; you don 't need to know what it means. H owever, a v alue of NULL is returned on ly

if a new contex t could not b e created. T his happen s when you ru n out of mem ory. If the conte xt is not NULL, you are

ready to be gin using it to interp ret scripts. W hen you are done with it, you must destroy th e context usin g this call:

 void wsDeleteContext(wsContext wsc);

Modifying the context

You now have a context that can be used to interpret scripts. However, before you do so, there are several routines you

can call to mo dify the behav ior of the con text.

First, when a script is executed, by default any error is reported via a message to stderr. You can change this behavior

by providing your own error handling function. The following typedef shows the type your function must be:

 typedef wsbool (*wsErrorHandler)(wsContext wsc,char *msg);

As you can see, you will be passed an error message and the context it occurred in. The first 3 characters of the error

message are a unique numeric code for that type of error (for example, � 903: string not terminated. �). For a list of

default error codes see WML/shared/wserror.h. You are free to display or ignore the error message in any way you

see fit. If you return False, the script will be terminated as normal for having an error occur. If you return True, the

script will continue as if no error happened. Be warned that returning True is dangero us. The scr ipt may be un able to

continue, such as when not eno ugh memory rem ains.

You assign the error han dler to the context by using the function pro totyped as follows:

 wsErrorHandler wsSetErrorHandler(wsContext wsc,wsErrorHandler
 handler);

The return is the previous error handler. You can save it and restore it at a later time if you wish.

You can set up a routine to be called by the interpreter occasionally as it executes the script. This routine should return

True to keep executing the script. If it returns False, the script will be terminated. The routine should be of this type:

 typedef wsbool (*wsContinueHandler)(wsContext wsc);

You install the routine using the following function:

 wsContinueHandler wsSetContinueHandler(wsContext wsc,
 wsContinueHandler handler,
 uint32 instrs,uint32 *oldinstrs);

Like the erro r handler ab ove, it returns the old continu e handler a s well as its instruction c ount so you can restore it if

desired. The instrs parameter is simply the number of bytecodes to be executed between calls to your function.

Bytecodes are conceptually very small; you can execute quite a number of them per second. Thus, you should make the

instrs parameter somewhat large. 100 or more is good, you should experiment to determine the frequency you require

for your application. If you make the number too small, your continue function will be called very often and much of the

execution time of the program will be spent calling your function.

Executing a script

Now that you have a context set up, you can execute scripts. There are several routines to interpret a script, but the

standard call is prototyped as fo llows:

 wsvalue wsInterpURL(wsContext wsc,char *url);

The scrip t and function you specify is loa ded and executed. S ee the section below on WM LScript U RLs for co mplete

information on how you use the url paramete r to specify the fun ction you wish to execute. T he return valu e is the result

returned by the function. It is a standard wsvalue, a concept described fully in its own section. It is worth reiterating here

that you must d estroy this value w hen you finish with it. T his is fully explained below.

WMLScriptEase: Integration SDK 5

There are additional functions to give you more control over what exactly you would like to interpret. Each is explained

fully in the WML ScriptEase API section. These are the functions which you can choose from:

 wsvalue wsInterpScript(wsContext wsc,script handle,char
 *function);
 wsvalue wsInterpFunc(wsContext wsc,char *function);
 wsvalue wsInterpFuncArgs(wsContext wsc,char *function,...);
 wsvalue wsInterpURLArgs(wsContext wsc,char *url,...);

Once you have finished w ith the return value and destroyed it, the context can be used to interpret add itional scripts.

Speeding repeated execution

Each time you interpret a script, that script's bytecodes must be read in, parsed, and verified. If you are interpreting a

single script and exiting, this is fine. If, howe ver, you are m aking repe ated calls to the same script, this is a considera ble

performance penalty. You can choose to load a script once and lock it in memory. It will be freed later when you

explicitly release it or automatically when you close do wn the context. The following ro utines will load and then release

a loaded script:

 script wsLoadScript(wsContext wsc,char *url);
 void wsUnloadScript(wsContext wsc,script handle);

Although wsLoadScript() takes a URL as described below, you are not allowed to include the function locator

fragment. Whene ver any URL refere nces this script, it will already be located and not need ed to be loaded . You can use

the wsInterpScript() routine to dire ctly execute func tions in this script as w ell.

URL Syntax

For mor e information on the conv entions for U RL syntax p lease see W MLSc ript docum ent section 9 .2

(http://www.wapforum.com/docs/techincal.htm, docume nt or visit the W ireless App lication Pro tocol web site

at http://www.wapforum.com/ docume nt wmlss-30-apr-98.pdf.

Customizing your WMLScriptEase interpreter

Customiz ation of the interp reter involve s two tasks. First, you need to ge t the code to compile o n your system. T his

should be easy as the entire WMLScriptEase ISDK is written in standard ANSI C. The second p rocess is to change the

behavior of the engine for differences in your system. For instance, URLs may not be able to refer to files and TCP-IP

connectio ns, and the D ialogs routine s may need to be mod ified to talk to you r user. Each customizatio n is describe d in

its own section .

Standard types

The file WML/shared/wstypes.h determines what types corresp ond to the needed types. For instance, on most

systems, an int is 32-bits, so sint32 is typedefed to signed int. Perhaps an int on your system is only 16 bits long

while a long is in fact 32 bits. You need to change the corresponding typedef in this file.

The typedefs defined in WML/shared/wstypes.h are:

 wsbool
 ubyte
 sbyte
 sint32
 uint32
 uint16
 sint16
 float32
 wschar

Allocating memory

The file WML/shared/wsmem.h determines how memory is allocated. It documents each of the routines called

internally. Yo u can chang e these routine s to force differe nt kinds of me mory to be alloced in d ifferent ways. Rea d this

file for full information.

WMLScriptEase: Integration SDK 6

In order to support operating environments in which memory can be important, we've defined a number of kinds of

memory allocation calls here. Y ou can change the given m acros to modify the beha vior of all such kinds of calls.

wsM alloc()

Generic malloc used to allocate 'large' chunks of memory. These will be things like source files in which the item can be

arbitrarily big. N ote that many a llocations thro ugh this routine w ill be small but the size could b e very large. O nly

fixed-sized items are allocated here. If the item will be growing, the grow allocators are used.

wsGro wM alloc() and wsG rowRea lloc()

Used to initially allocate some kind of pool that will be reallocated as needed. For example, the run-time operand stack.

wsSm allMalloc()

Used to allocate a structure (i.e. do a 'new') Although different sized-structures will be alloced, you can expect many

similar sized ones and none will be particularly big. Open-ended structures (i.e. ones that have a size element and are

alloced to s ome arb itrary size) will be co nsidered to be 'growab le' and alloced with the grow ro utines if it can chang e in

size, otherwise it will be considered to be large and alloced with wsMalloc().

wsFastM alloc()

This is used exactly like wsSmallMalloc() except it is used for the few structures that should be memory pooled.

These structures are alloced/freed/and accessed many many times. You should use the fastest memory you have

available for them and if you turn off memory pooling, be warned that you can expect them to be malloced/freed

millions of times in a typical program's execution.

wsStringMalloc() and wsStrdup

Used to allocate a string of the given number of chars. This string will stick around for the execution of the program.

wsTe mpStringM alloc()

Just like wsStringMalloc() except the string is being created for a temporary purpose and will soon be freed.

wsFree(), w sStringFree(), wsG rowFree(), w sSmallFree(), ws FastFree()

Free an item alloced with the appropriate routine.

You are free to add new kinds of memory. If you make it look similar to the above, you will find it easier to keep in sync

with updates. For all structures that we allocate, they are alloced in one routine. By modifying the given routine, you can

change the way that structure is allocated. All strings are used pretty generically, and are all alloced using

wsStringMalloc() and wsTempStringMalloc(). They are used only for strings, so these are in effect the allocators

for all strings in the pr ogram.

struct wsConst - constant.c - allocateConst() uses wsSmallMalloc().

The standard library

The file WML/interp/wsstdrun.c provides the wrapp er functions for each of the W MLScript stand ard library calls.

The Dialogs and WM LBrowser libraries will likely need to be modified to correctly interact with your system. See the

section below from mo re information on writing wrapp er functions.

Reading URLs

The file WML/interp/wsurl.c handles all reading of urls. You may need to modify it to change existing URL types or

add new ones as appropriate for your system. This goes along with how you want to store URLs described earlier.

Default URL

You can define WS_DEFAULT_URL to be the base url that relative URLs are relative to. This applies only to calls not

already within a script, since then the calls are rela tive to the script's url. If you don't define this, the default base url is

"file://./". You c ould chan ge it to, for instance , "http://localhost/".

WMLScriptEase: Integration SDK 7

Meta tags

Meta tags exist in WMLScript and are, by default ignored. However, the user may create a custom use for them. In the

file WML/compile/wscomp.c (search on MET ANO TE:) ca n be found the code tha t reads them in. You ca n modify this

to do something of your choice when meta tags are found.

Floating point

You can turn off floating point by defining WS_NO_FLOAT. The beh avior of W MLSc riptEase wh en floating po int is

turned off is exactly as defined in the WMLScript specification, section 14.

Writing wrapper functions

Wrapper functions are routines called by the interpreter to perform a scripting function that is implemented in C. All of

the standard WMLSc ript library functions are for instance implemented via wrapper functions. You may also write your

own wrap per function s to make av ailable to the sc ript user.

A wrapper function is de clared as follows:

 wsvalue wrapper(wsContext wsc,wsvalue *argv)
 {
 /* function body here */
 }

The arguments are passed to the function in argv. These arguments are wsvalues as described later. The number of

argument values passed to each function is fixed based on the table used to add that function wrapper function to the

ISDK. Variable number of parameters are not allowed.

Every functio n wrappe r returns a wsva lue to be the re sult of that function c all. If NULL is be returned it is implicitly

replaced with the empty strin g. The bo dy of the functio n is depend ent on the func tion � s purpose . Look at

WML/interp/wsstdrun.c for samples of wrappe r functions.

Adding wrapper function libraries

In order to give scripts better control over your application, you will probably want to make additional wrapper

functions callable by these scripts. This is a straightforward process that involves the creation and addition of a wrapper

library to a context. The following structure allows you to define a single library wrapper function.

 struct wsLibraryFunction
 {
 char *funcname; /* name of the function */
 int numargs; /* number of arguments it takes */
 wsWrapper wrapper; /* wrapper function to call */
 };

The definition includes the nam e the script will refer to the function with, the number of argumen ts the function takes,

and the corresponding C code function to call. A library is an array of these structures with the last element having all of

its members set to NULL.

After you have written your wrapper functions and created a library description array, you need to add this library to the

context. You do this using the wsAddLibrary() call prototyped as:

 wsbool wsAddLibrary(wsContext wsc,char *libname, struct
 wsLibraryFunction *funcs);

The library is added and given the name libname. This name is a URL tha t will be redirec ted to use this libr ary.

Normally a URL loads bytecodes, in this case you specify that a reference to this URL instead refers to the wrapper

functions you provide. Any URL is acceptable, it does not have to match a standard URL type, although you could do

that. The user will access your functions using the use url syntax, for example:

 use url myurl "myurl";

or

 use url myurl "http://localhost/library.wsb";

WMLScriptEase: Integration SDK 8

Modifying the standard library

The second way to make wrapper functions available is to extend the standard library with extra functions, but this is not

recommended. If you do modify the standard library then your bytecodes will no longer match the WMLScript

Specification and therefore w ill not be portable with other W MLScript imp lementations.

The file WML/shared/wsstdlib.c enumerates the various standard functions. You must add the names and number of

arguments yo ur functions take , either by extend ing an existing libr ary or add ing a new libra ry. In the file

WML/interp/wsstdrun.c there are corresponding tables to indicate which wrapper functions are to be called when

the function is invoked. You must extend these tables in the same way. The tables must sync up or scripts will not run

correctly.

Storing information

There will be times when you need to associate information with a particular context and retrieve it. You can associate a

single pointer with each context and later retrieve it. This is useful to point to a particular structure that contains some

information you'd like to be able to retriev e. The follo wing two functio ns are prov ided:

 void wsSetContextData(wsContext wsc,void *data);
 void *wsGetContextData(wsContext wsc);

Reporting errors

In a wrapp er function, you may determ ine that some error con dition exists. Y ou can rep ort that to the en gine using this

function:

 void wsReportError(wsContext wsc,wschar *format,...);

It uses a printf format string followed by arguments. The error message is reported and the script terminated when you

return from the function. Any re turn value is igno red.

Other times, you want the script to exit and return a particular value, like the C library function exit() does. T his

function will tell the interpreter to terminate the script when your function returns. The return from your function

becom es the return for the script.

 void wsShouldExit(wsContext wsc);

Working with wsvalues

A primary task of a wrapper function is to extract the WMLScript values of its parameters and create a WMLScript

value to return as the result of the function. This is done with wsvalues. A wsvalue holds one single WMLScript value,

be it an integer, float, boolean, string, or invalid value. You can create new wsvalues, query their type, or get at the

actual value. W svalues are im mutable o nce created .

Each wsv alue contain s a particular typ e of data. Y ou can use this function to find out what it is:

 int wsValueType(wsContext wsc,wsvalue val);

It returns one o f 5 values: WS_VT_INT, WS_VT_FLOAT, WS_VT_STRING, WS_VT_BOOL, or WS_VT_INVALID. Once you

know the type, you can access its value. Only the WS_VT_INVALID has no underlying value. The following routines

access a wsv alues value. N ote that if you use th e wrong ex traction routin e for the type o f the wsvalue, you will get a

nonsensica l result. Make sure to verify the typ e first.

 sint32 wsValueGetInt(wsContext wsc,wsvalue val);
 float wsValueGetFloat(wsContext wsc,wsvalue val);
 wsbool wsValueGetBool(wsContext wsc,wsvalue val);
 sint32 wsValueGetLength(wsContext wsc,wsvalue val);
 wschar *wsValueGetString(wsContext wsc,wsvalue val);

A key concept to a wsvalue is ownership. If you own a wsvalue, you must relinquish that ownership at some time. If you

don't, the value will never be freed and you will have a memory leak. W svalues can be generated in one of two places.

The first plac e are the wsva lues passed to you as pa rameters. Y ou do no t own these. Y ou can acc ess them, but the y will

disappear when your wrapper function exits. The second place is by creating a new wsvalue. The following functions

will all create a new wsvalue that yo u then own.

 wsvalue wsValueNewInvalid(wsContext wsc);
 wsvalue wsValueNewString(wsContext wsc,wschar *string,int length);
 wsvalue wsValueNewInt(wsContext wsc,sint32 val);
 wsvalue wsValueNewFloat(wsContext wsc,float val);

WMLScriptEase: Integration SDK 9

 wsvalue wsValueNewBool(wsContext wsc,wsbool val);
 wsvalue wsValueNewEmpty(wsContext wsc);

You mu st destroy these values when you are do ne with them sinc e you own th em. The following functio n will destroy a

wsvalue you own, relinqu ishing your ow nership on it. Do not de stroy a value yo u do not o wn.

 void wsDestroyValue(wsContext wsc,wsvalue val);

When you return from a wrapper function, you return a wsvalue that is to be the result of the function. This is analogous

to destroying it, you are relinquishing ownership o n this wsvalue. This has two conseq uences. First, you do not also

destroy the value. Destroying a wsva lue or returning it from a wrapper func tion are two different ways to relinquish

ownership of the wsvalue; choose only one. Second, since you do not own your parameters, you cannot return them. You

cannot relinquish ownership you do not have, if you do you will certainly cause the engine to crash. In this case, the

following functio n is provide d:

 wsvalue wsValueAddUser(wsContext wsc,wsvalue val);

It creates a new ownership on the given wsvalue for you. You can use it on a parameter, so that the result is a wsvalue

identical to the parameter but which you now own. Thus, you can return the wsvalue from your wrapper function. Each

call to this routine c reates a new ownership of the wsvalue . You can create mo re than one. F or instance, if you really

wanted to, you could create a new wsvalue (giving you an ownership of it) then use wsValueAddUser() to make a

second ownersh ip of it. Before you exit your function, you must de al with both ownerships. Yo u might use

wsDestroyValue() to relinquish o ne owners hip and retu rn the wsvalue to relinquish the second.

Although these functions indicate the complexity of wsvalues, you can think of them simply. If you want to return one of

your parameters, you return the wsValueAddUser() of that parameter. If you create a wsvalue using any of the creation

functions listed above, you either destroy it using wsDestroyValue() or return it from your wrapp er function.

Conversions

WMLScript defines standard ways to convert values of one type to another. They are typically applied to parameters of

the standard library functions. The following functions perform the standard conversion. They all return a new wsvalue

which you have ownership of; in effect they create a new wsvalue which is the result of the conversion. The original

source wsvalue is unchanged. The type of the returned value will always be one of the target types or WS_VT_INVALID.

The later ind icates an erro r in converting .

 wsvalue wsConvertToString(wsContext wsc,wsvalue src);
 wsvalue wsConvertToInteger(wsContext wsc,wsvalue src);
 wsvalue wsConvertToBoolean(wsContext wsc,wsvalue src);
 wsvalue wsConvertToFloat(wsContext wsc,wsvalue src);
 wsvalue wsConvertToIntOrFloat(wsContext wsc,wsvalue src);

The last function is different in that it takes two values and converts both to ints or both to floats (using the standard

WM LScript rules). Thus, it has two output wsvalue parameters which are filled in with the resulting wsvalues. Like the

above, b oth of the new values are o wned by yo u. Both va lues will be of WS_VT_INVALID if the conversio n failed.

 void wsConvertIntsAndFloats(wsContext wsc,wsvalue src1,wsvalue
 src2,wsvalue *dst1,wsvalue *dst2);

WMLScriptEase: Integration SDK 10WMLScriptEase

WMLScriptEase API

Here is an alphabetical listing of all functions in the WMLS criptEase API along with a description and usage

information .

wsAddLibrary
DESCRIPTION Adds a new library of compiled wrapper functions to the engine.

SYNTAX wsbool wsAddLibrary(wsContext wsc,char *libname,
 struct wsLibraryFunction *funcs);

COMMENTS To use this function, first you need to build a table of wrapper functions. A wrapper function

itself is defined as follows:

 wsvalue wrapper(wsContext wsc,wsvalue *argv)
 {
 }

Wrapper functions are completely defined <link to manual chapter.> You build an array of

library function structures which refer to these wrapper functions and specify the number of

arguments th e functions take along with their n ame:

 struct wsLibraryFunction
 {
 char *funcname; /* name of the function */
 int numargs; /* number of arguments it takes */
 wsWrapper wrapper;
 /* wrapper function to call */
 };

Once yo u've built the array o f these (terminate d by an entry o f all NULL), call this routine to

register it. It will masquerade as the give URL name. The function tab le itself is retained so

you must make sure to kee p it intact even after the function returns.

RETURN A boolean indica ting success.

EXAMPLE The following code fragment shows how a small library named nombas may implement the

nombas#printf function.

wsvalue nombasPrintf(wsContext wsc,wsvalue *argv)
{
 /* code for �printf � function goes here */
}

/* A table of the functions included, in this case just one.
 */
struct wsLibraryFunction nombasLib[] =
{
 { "printf", 1, nombasPrintf },
 { NULL, 0, NULL }
};

main()
{
 initialization code here
 wsAddLibrary(wsc,"nombas",nombasLib)
 interpret and termination code here
}

WMLScriptEase: Integration SDK 11WMLScriptEase

wsCompile
DESCRIPTION Comp ile a WM LScript scrip t and return the bytecode s for it.

SYNTAX ubyte *wsCompile(char *filename,wschar *buf,
 size_t *size);

COMMENTS This function takes a '\0'-terminated string of characters 'buf' which is ASCII or UNICODE

depending on the system (see WML/shared/wstypes.h.) It is compiled into bytecodes,

and returned with the size paramete r having the size of the byteco des in bytes filled in .

The filename parameter is used only to label errors that occur; you should give the name

of the file the script is associated with or some other way the user can figure out what the

error message is referring to.

RETURN NULL if an error, else the bytecodes. W hen finished with this return, use

wsFreeBytescodes() to get rid of it.

SEE ALSO wsFreeBytecodes

wsConvertToBoolean
DESCRIPTION Converts a given wsvalue to a boole an value acc ording to the WM LScript rule s.

SYNTAX wsvalue wsConvertToBoolean(wsContext wsc,
 wsvalue src);

COMMENTS Stock WM LScript conversion.

RETURN A new wsvalue which you must destroy when done. If the conversion fails, an invalid value

is returned (which must still be destroyed).

SEE ALSO wsConve rtToStrin g, wsConv ertToIn teger, wsCo nvertTo Float,

wsConve rtToIntO rFloat, wsC onvertIntsA ndFloats

wsConvertToFloat
DESCRIPTION Converts a given wsvalue to a float value a ccording to the W MLSc ript rules.

SYNTAX wsvalue wsConvertToFloat(wsContext wsc,
 wsvalue src);

COMMENTS Stock WM LScript conversion.

RETURN A new wsvalue which you must destroy when done. If the conversion fails, an invalid value

is returned (w hich must still be d estroyed).

SEE ALSO wsConvertToString, wsConvertToInteger, wsConvertToBo olean,

wsConve rtToIntO rFloat, wsC onvertIntsA ndFloats

wsConvertToInteger
DESCRIPTION Converts a given wsvalue to an integer va lue accord ing to the W MLSc ript rules.

SYNTAX wsvalue wsConvertToInteger(wsContext wsc,
 wsvalue src);

COMMENTS Stock WM LScript conversion.

RETURN A new wsvalue which you must destroy when done. If the conversion fails, an invalid value

is returned (w hich must still be d estroyed).

SEE ALSO wsConve rtToStrin g, wsConv ertToB oolean, wsC onvertT oFloat,

wsConve rtToIntO rFloat, wsC onvertIntsA ndFloats

WMLScriptEase: Integration SDK 12WMLScriptEase

wsConvertToIntOrFloat
DESCRIPTION Converts a given wsvalue to an integer o r float value acc ording to the WM LScript rule s.

SYNTAX wsvalue wsConvertToIntOrFloat(wsContext wsc,
 wsvalue src);

COMMENTS Stock WM LScript conversion. The choice to convert to float or integer is specified in the

WM LScript sp ecification. T he value is co nverted to a n integer. If that is not p ossible, it is

converted to a float.

RETURN A new wsvalue which you must destroy when done. If the conversion fails, an invalid value

is returned (w hich must still be d estroyed).

SEE ALSO wsConve rtToStrin g, wsConv ertToIn teger, wsCo nvertTo Boolea n, wsConv ertToF loat,

wsConve rtIntsAndF loats

wsConvertToIntsAndFloats
DESCRIPTION Converts the two given wsvalue s to integer or float value according to the W MLScript rules.

SYNTAX void wsConvertIntsAndFloats(wsContext wsc,wsvalue
 src1, wsvalue src2,
 wsvalue *dst1, wsvalue *dst2);

COMMENTS Stock WM LScript conversion. The choice to convert to float or integer is specified in the

WM LScript sp ecification. If either value is a floating p oint, then bo th are conve rted to float.

Otherwise, in teger is tried for b oth then float for both if it fails.

RETURN None. Two new wsvalues are filled in, and must be destroyed when done. If either

conversion fails that value will be filled by an invalid value (which must still be destroyed).

SEE ALSO wsConve rtToStrin g, wsConv ertToIn teger, wsCo nvertTo Boolea n, wsConv ertToF loat,

wsConvertToIntOrFloat

wsConvertToString
DESCRIPTION Converts a given wsvalue to a string value according to the W MLScript rules.

SYNTAX wsvalue wsConvertToString(wsContext wsc,
 wsvalue src);

COMMENTS Stock WM LScript conversion.

RETURN A new wsvalue which you must destroy when done. If the conversion fails, an invalid value

is returned (which must still be destroyed).

SEE ALSO wsConve rtToInteg er, wsCon vertToB oolean, wsC onvertT oFloat, wsC onvertT oIntOrF loat,

wsConve rtIntsAndF loats

wsDeleteContent
DESCRIPTION Destroy a context you are done with.

SYNTAX void wsDeleteContext(wsContext wsc);

COMMENTS When you finish using a context, you use this routine to destroy it and free all associated

memory.

RETURN none

SEE ALSO wsNewContext

WMLScriptEase: Integration SDK 13WMLScriptEase

wsDestroyValue
DESCRIPTION Relinquish a wsvalue that you own

SYNTAX void wsDestroyValue(wsContext wsc,wsvalue val);

COMMENTS You will no longer own the given wsvalue. You can only use this on values you own, such

as values you created using one of the wsCreateXXX() functions.

RETURN none

SEE ALSO wsValueNewBool, wsValueNewFloat, wsValueNewInt, wsValueNewInvalid,

wsValueNewString

wsFreeBytecodes
DESCRIPTION Free the bytecodes returned from wsCompile().

SYNTAX void wsFreeBytecodes(ubyte *buf,size_t size);

COMMENTS When you are finished with the byteco des returne d by wsCompile(), use this function to

discard them. The second parameter is the size (an output parameter from wsCompile()).

Don't call this function if the output was NULL.

RETURN none

SEE ALSO wsComp ile

wsGetContextData
DESCRIPTION Get the save d generic p ointer you ass ociated with th is context.

SYNTAX void *wsGetContextData(wsContext wsc);

COMMENTS This simple retrieves a pointer you have previously saved with wsSetContextData().

What it points to is up to you.

RETURN The saved pointer.

SEE ALSO wsSetCo ntextData

wsInterpFunc
DESCRIPTION Call a function in the current script

SYNTAX wsvalue wsInterpFunc(wsContext wsc,
 char *function);

COMMENTS This routine is identical to wsInterpScript() except the c alled function is looked fo r in

the current script. You, thus, do not include the host part of the url, only the function, for

example : "#myfunc(1,2)"

RETURN The wsvalue result of the called function. You own it and must destroy it when you are done

with it.

SEE ALSO wsInterpURL, wsInterpScript, wsInterpFuncArgs, wsInterpURLArgs

wsInterpFuncArgs
DESCRIPTION Call a function in the current script passing wsvalue argu ments.

SYNTAX wsvalue wsInterpFuncArgs(wsContext wsc,
 char *function,...);

COMMENTS This routine is exactly like wsInterpFunc() in that you specify a function in the current

script to execute. However, you do not specify the arguments. Instead, you pass a series of

wsvalues as ar guments, term inated by NULL. These values will not be freed; when the

function returns you still own them. You spe cify the function name such as "#myfunc".

wsInterpFuncArgs

WMLScriptEase: Integration SDK 14WMLScriptEase

RETURN The wsvalue result of the called function. You own it and must destroy it when you are done

with it.

SEE ALSO wsInterpURL, wsInterpScript, wsInterpFunc, wsInterpURLArgs

wsInterpScript
DESCRIPTION Call a function in the given scrip t.

SYNTAX wsvalue wsInterpScript(wsContext wsc,
 script handle,
 char *function);

COMMENTS Similar to wsIn terpFunc , but instead o f calling the function in the current scr ipt, you specify

the handle o f the script the functio n is in.

RETURN The wsvalue result of the called function. You own it and must destroy it when you are done

with it.

SEE ALSO wsInterpURL, wsInterpFunc, wsInterpFuncArgs, wsInterpURLArgs

wsInterpURL
DESCRIPTION Stock call to interpret a func tion in a script.

SYNTAX wsvalue wsInterpURL(wsContext wsc,char *url);

COMMENTS This is the stock interpret of a script function. It needs the host reference (http://,

file://) part of the url (o r a relative versio n), than name of the function (se parated b y '#')

and any arg uments in pa renthesis (e.g. (4,5)).

RETURN The wsvalue result of the called function. You own it and must destroy it when you are done

with it.

SEE ALSO wsInterpScript, wsInterpFunc, wsInterpFuncArgs, wsInterpURLArgs

wsInterpURLArgs
DESCRIPTION Call to interpret a script but passing args using wsvalues.

SYNTAX wsvalue wsInterpURLArgs(wsContext wsc,
 char *url,...);

COMMENTS Identical to wsInterpURL except you do not include any arguments in the URL. Instead you

include a ser ies of wsvalues a s additiona l paramete rs to this function ter minated b y NULL.

RETURN The wsvalue result of the called function. You own it and must destroy it when you are done

with it.

SEE ALSO wsInterpURL, wsInterpScript, wsInterpFunc, wsInterpFuncArgs

wsLoadScript
DESCRIPTION Preload a script and lo ck it in memo ry.

SYNTAX script wsLoadScript(wsContext wsc,char *url);

COMMENTS If you know you are going to be executing a number of functions in a single script, you can

load the sc ript in on ce u sing this call and unlo ad i t whe n you are fin ishe d (if you don 't

unload it, it automatically unloads when the context is destroyed.) You can also use the

handle to re fer to this script, or yo u can contin ue to use full U RLs which end up refe rring to

the script.

wsLoadScript

WMLScriptEase: Integration SDK 15WMLScriptEase

RETURN Script handle or NULL on failure

SEE ALSO wsUnloadScript

wsNewContext
DESCRIPTION Create and initialize a new co ntext.

SYNTAX wsContext wsNewContext();

COMMENTS Each context is capable of executing one script at a time. Typically, you will need one

context to run the scripts for your application, but you can have as many as you need. Each

is created b y a call to this routine . You mu st delete the co ntext when yo u are don e with it

using wsDeleteContext().

RETURN The new context or NULL if not enough m emory was available to c reate a new c ontext.

SEE ALSO wsDeleteContext

wsReportError
DESCRIPTION Print an error message and note that an error occurred.

SYNTAX void wsReportError(wsContext wsc,
 wschar *format,...);

COMMENTS This routine expects the format string to be printf-compatible. An error message is generated

and when you return from the function, the sc ript will exit.

RETURN none

SEE ALSO wsShould Exit

wsSetContextData
DESCRIPTION Set the context's data pointer.

SYNTAX void wsSetContextData(wsContext wsc, void *data);

COMMENTS The da ta pointer is use r defined; this ro utine sets the po inter, and you can later retriev e it

with wsGetContextData().

RETURN none

SEE ALSO wsGetC ontextDa ta

wsSetContinueHandler
DESCRIPTION Set a function to be called periodically during execution.

SYNTAX typedef wsbool (*wsContinueHandler)
 (wsContext wsc);
 wsContinueHandler wsSetContinueHandler(wsContext
 wsc, wsContinueHandler handler,
 uint32 instrs,
 uint32 *oldinstrs);

COMMENTS You co ntinue function w ill be called ev ery 'instrs' bytecodes executed. Since bytecodes

encomp ass very small ac tions, you will wan t to execute a n umber o f bytecode s between c alls

to your routine or the vast majority of the time will be spent in your routine. 100, 1000, or

more de pending o n your need ed freque ncy. Your routine return s a boolea n that if False

causes exe cution of the sc ript to be term inated.

wsSetContinueHandler

WMLScriptEase: Integration SDK 16WMLScriptEase

RETURN 'oldinstrs' is filled in with the old num ber of instructio ns between calls and the o ld

handler is retu rned, both so you can re store them w hen done if you like.

SEE ALSO wsSetErrorHandler

wsSetErrorHandler
DESCRIPTION Install an error handler.

SYNTAX typedef wsbool (*wsErrorHandler)(wsContext wsc,
 char *msg);
 wsErrorHandler wsSetErrorHandler(wsContext wsc,
 wsErrorHandler handler);

COMMENTS Normally an error causes a message to be sent to the screen. If you install an error handler,

the message will be sent to it instead. You can print it, store it to disk, or whatever. The

return is usually False, but True will cause execution to try to continue. Be warned that

this may not work. It is probably best to return False always excep t when you are using this

mechanism to comm unicate with you r wrappe r functions.

RETURN The last err or handler if you wish to resto re it.

SEE ALSO wsSetContinueHandler

wsShouldExit
DESCRIPTION Tell the interp reter to exit.

SYNTAX void wsShouldExit(wsContext wsc);

COMMENTS The script will terminate, analogous to exit() in a C prog ram. Ho wever, the term ination is

not a failure; you r return value is re turned to the caller when yo u return from this function.

RETURN none

SEE ALSO wsReportError

wsUnloadScript
DESCRIPTION Release a sc ript handle fro m wsLoa dScript.

SYNTAX void wsUnloadScript(wsContext wsc, script handle);

COMMENTS The script will no longer be locked in memory. It will be unloaded unless it is being used or

another wsLoadScript() handle to it exists.

RETURN none

SEE ALSO wsLoadScript

wsValueAddUser
DESCRIPTION Create a new look on a wsvalue.

SYNTAX wsvalue wsValueAddUser(wsContext wsc,wsvalue val);

COMMENTS The manual cha pter on wsvalues explains extensively the co ncept of wsvalues and lock s.

This routine creates a new lock of the give n wsvalue. All o ld locks rem ain.

RETURN The created lock

SEE ALSO wsDestroyValue

WMLScriptEase: Integration SDK 17WMLScriptEase

wsValueGetBool
DESCRIPTION Extract the boolean value from a wsvalue

SYNTAX wsbool wsValueGetBool(wsContext wsc,wsvalue val);

COMMENTS This function is only valid if the wsvalue in question is of type WS_VT_BOOLEAN (see

wsValueType()). If it is not, the return will be nonsensica l.

RETURN The boolean value

SEE ALSO wsValueGetInt, wsValueGetFloat, wsValueGetString,

wsValueGetLength, wsValueType

wsValueGetFloat
DESCRIPTION Extract the float value from a wsvalue

SYNTAX float32 wsValueGetFloat(wsContext wsc,
 wsvalue val);

COMMENTS This function is only valid if the wsvalue in question is of type WS_VT_FLOAT (see

wsValueType()). If it is not, the return will be nonsensica l.

RETURN The float value

SEE ALSO wsValueGetInt, wsValueGetBool, wsValueGetString, wsValueGetLength, wsValueType

wsValueGetInt
DESCRIPTION Extract the integer value from a wsvalue

SYNTAX sint32 wsValueGetInt(wsContext wsc,wsvalue val);

COMMENTS This function is only valid if the wsvalue in question is of type WS_VT_INT (see

wsValueType()). If it is not, the return will be nonsensica l.

RETURN The integer value

SEE ALSO wsValueGetFloat, wsValueGetBool, wsValueGetString, wsValueGetLength, wsValueType

wsValueGetLength
DESCRIPTION Get the length of the stored string

SYNTAX sint32 wsValueGetLength(wsContext wsc,
 wsvalue val);

COMMENTS This function is only valid if the wsvalue in question is of type WS_VT_STRING (see

wsValueType()). If it is not, the return will be nonsensica l.

RETURN The length of the string in characters.

SEE ALSO wsValueGetInt, wsValueGetFloat, wsValueGetBool, wsValueGetString, wsValueType

wsValueGetString
DESCRIPTION Extract the string value

SYNTAX wschar *wsValueGetString(wsContext wsc,
 wsvalue val);

COMMENTS WMLScript strings can have embedded '\0's in them. You use wsValueGetLength() to

find the actual length of the string. For you convenience, a '\0' is always appended to the

string. This means any returned string will always be '\0'-terminated for passing to C library

functions. T his is NOT counted in th e string's length.

wsValueGetString

WMLScriptEase: Integration SDK 18WMLScriptEase

The returned pointer points to memory internal to the wsvalue and is valid until the wsvalue

is destroyed. If, for instance, you get the string value of a parameter, when you exit the

wrapper function, the valid will no longer b e valid.

RETURN The string value.

SEE ALSO wsValueGetInt, wsValueGetFloat, wsValueGetBool, wsValueGetLength, wsValueType

wsValueNewBool
DESCRIPTION Create a new boolean wsvalue.

SYNTAX wsvalue wsValueNewBool(wsContext wsc,wsbool val);

COMMENTS This function creates a new wsvalue which is initialized with the given boolean value. You

own the wsv alue and m ust destroy it whe n you are do ne. Reme mber, wsva lues are read only.

If you directly access the wsvalue structure and change the value, you will break the

interpreter.

RETURN The new boolean value

SEE ALSO wsValueNewEmpty, wsValueNewFloat, wsValueNewInt, wsValueNewInvalid,

wsValueNewString

wsValueNewEmpty
DESCRIPTION Create a new empty string wsvalue.

SYNTAX wsvalue wsValueNewEmpty(wsContext wsc);

COMMENTS This function creates a new wsvalue which is initialized as the empty string. You own the

wsvalue and must destroy it when you are done. Remember, wsvalues are readonly. If you

directly acce ss the wsvalue stru cture and c hange the va lue, you will brea k the interprete r.

RETURN The new empty string wsvalue.

SEE ALSO wsValueNewBool, wsValueNewFloat, wsValueNewInt, wsValueNewInvalid,

wsValueNewString

wsValueNewFloat
DESCRIPTION Create a new float wsvalue.

SYNTAX wsvalue wsValueNewFloat(wsContext wsc,float val);

COMMENTS This function creates a new wsvalue which is initialized with the given float value. You own

the wsvalue and must destroy it when you are done. Remember, wsvalues are readonly. If

you directly access the wsvalue structure and change the value, you will break the

interpreter.

RETURN The new float wsvalue.

SEE ALSO wsValueNewBool, wsValueNewEmpty, wsValueNewInt, wsValueNewInvalid,

wsValueNewString

WMLScriptEase: Integration SDK 19WMLScriptEase

wsValueNewInt
DESCRIPTION Create a new integer wsvalue.

SYNTAX wsvalue wsValueNewInt(wsContext wsc,sint32 val);

COMMENTS This function creates a new wsvalue which is initialized with the given integer value. You

own the wsv alue and m ust destroy it whe n you are do ne. Reme mber, wsva lues are read only.

If you directly access the wsvalue structure and change the value, you will break the

interpreter.

RETURN The new integer wsvalue.

SEE ALSO wsValueNewBool, wsValueNewEmpty, wsValueNewFloat, wsValueNewInvalid,

wsValueNewString

wsValueNewInvalid
DESCRIPTION Create a new invalid wsvalue.

SYNTAX wsvalue wsValueNewInvalid(wsContext wsc);

COMMENTS This function creates a new wsvalue which is initialized as the invalid value. You own the

wsvalue and must destroy it when you are done. Remember, wsvalues are readonly. If you

directly acce ss the wsvalue stru cture and c hange the va lue, you will brea k the interprete r.

RETURN The new invalid value.

SEE ALSO wsValueN ewBoo l, wsValueN ewEmp ty, wsValueN ewFloat, wsV alueNew Int,

wsValueNewString

wsValueNewString
DESCRIPTION Create a new string wsvalue

SYNTAX wsvalue wsValueNewString(wsContext wsc,
 wschar *string,
 int length);

COMMENTS This function creates a new wsvalue which is initialized with the given string value. You

own the wsv alue and m ust destroy it whe n you are do ne. Reme mber, wsva lues are read only.

If you directly access the wsvalue structure and change the value, you will break the

interpreter.

RETURN The new string value.

SEE ALSO wsValueN ewBoo l, wsValueN ewEmp ty, wsValueN ewFloat, wsV alueNew Int,

wsValueNewString

wsValueType
DESCRIPTION Get the type of the value

SYNTAX int wsValueType(wsContext wsc, wsvalue val);

COMMENTS An enumeration is defined for you which specifies the possible types a wsvalue may have:

 enum wsValueTypes
 {
 WS_VT_INT = 0,
 WS_VT_FLOAT = 1,
 WS_VT_STRING = 2,
 WS_VT_BOOL = 3,
 WS_VT_INVALID = 4
 };

wsValueType

WMLScriptEase: Integration SDK 20WMLScriptEase

RETURN The wsvalue's type.

SEE ALSO wsValueG etInt, wsValu eGetFlo at, wsValue GetBo ol, wsValue GetString, w sValueG etLength

