

ScriptEase

for
v4.10c

Nombas, Inc.

© 1999 Nombas Incorporated. All rights reserved. No part of this manual may be copied
without written permission by Nombas Incorporated. If you would like to request
permission to use a Nombas logo, or any section of this manual, please mail your request
to:

Nombas, Inc.
64 Salem Street
Medford, MA 02155
USA

http://www.nombas.com/

All Nombas products are trademarks or registered trademarks of Nombas Incorporated.
Other brand names are trademarks or registered trademarks or their respective holders.
Windows, as used in this manual, refers to Microsoft's implementation of a windowing
system.

ScriptEase™ ISDK/Java 3

Contents

INTRODUCTION 11
Unpacking and installing ScriptEase:ISDK ...11
Integration overview...11
Initializing the ISDK ..12

interface JseErrorHandler: ...12
interface JseContinueFunction:..12
interface JseFileLocation: ..13
interface JseToolkitAppIOInterface:..13

The JseExternalLinkParameters object ...14
Creating a JseContext object ...15

Security code ...16
Testing the integration ...17
Adding functions to the ScriptEase engine...17

Creating a ScriptEase function library table ..17
Initializing a ScriptEase function library table...19

Writing ScriptEase function wrappers ...20
Retrieving function arguments in a wrapper method ...20
Getting Data From JseVariables ..22
Assigning values to JseVariables...22
JseVariable Attribute Flags..23
Returning values from a wrapper method..23
Using inner class methods ...24
Passing and returning simple data types ..25
Passing simple data types by reference..26
Working with objects...27
Functions with a variable number of arguments ..28
Accepting a ScriptEase argument of unknown type ..29

Calling interpreted ScriptEase functions ...29
Creating and destroying jseVariables...30
Interpreting a script with jseInterpret() ...31

jseInterpret() - flags for the most common situations ..33

4 ScriptEase™ ISDK/Java

APPLICATION PROGRAMMING INTERFACE 35
JseActivationObject..35
jseAddLibrary...36
jseAppExternalLinkRequest ...37
jseAssign ..38
jseBreakpointTest ...38
jseCallAtExit ...39
jseCallFunction ...40
jseCompare ...41
jseCompareEquality...42
jseCompareLess ..42
jseConvert ...43
jseCopyBuffer ...43
jseCopyString..44
jseCreateCodeTokenBuffer ...44
jseCreateConvertedVariable ...45
jseCreateFunctionTextVariable ..47
jseCreateLongVariable ..48
jseCreateSiblingVariable ...49
jseCreateStack ..50
jseCreateVariable ...50
jseCreateWrapperFunction ...51
jseCurrentContext ..51
jseCurrentFunctionName ..51
jseDeleteMember ..52
jseDestroyStack...52
jseDestroyVariable ...53
jseEvaluateBoolean...54
jseFindVariable...54

ScriptEase™ ISDK/Java 5

jseFuncVar ..55
jseFuncVarCount..55
jseFuncVarNeed..55
jseGetArrayLength...57
jseGetAttributes..58
jseGetBoolean ...58
jseGetBuffer ..58
jseGetByte ...59
jseGetCurrentThisVariable ...59
jseGetExternalLinkParameters...59
jseGetFileNameList ..60
jseGetFunction..60
jseGetIndexMember...61
jseGetIndexMemberEx ..61
jseGetJavaObject..61
jseGetToolkitApp..62
jseGetLong ..62
jseGetMember...63
jseGetMemberEx ..63
jseGetNextMember...64
jseGetString...64
jseGetType...65
jseGetVariableName ..65
jseGetWriteableBuffer ...65
jseGetWriteableString..66
jseGlobalObject ..66
jseIndexMember ...67
jseIndexMemberEx ..67
jseInitializeEngine ..68
jseInitializeExternalLink ...68

6 ScriptEase™ ISDK/Java

jseInterpret..69
jseInterpExec ..71
jseInterpInit ..72
jseInterpTerm...73
jseIsFunction ...73
jseIsLibraryFunction..74
jseLibErrorPrintf ...74
jseLibSetErrorFlag...74
jseLibSetExitFlag..75
jseLocateSource ..75
jseMember...76
jseMemberEx ..77
jseMemberWrapperFunction..78
jsePreDefineNumber ..79
jsePreDefineLong..80
jsePreDefineString..81
jsePush ...82
jsePreviousContext ...82
jsePutBoolean..83
jsePutBuffer ..83
jsePutByte..83
jsePutNumber ...84
jsePutLong...84
jsePutString...85
jsePutStringLength...85
jseQuitFlagged ..86
jseReturnNumber ...87
jseReturnLong ..87
jseReturnVar...88
jseSetAttributes...89

ScriptEase™ ISDK/Java 7

jseSetArrayLength..90
jseSetJavaObject...90
jseTellSecurity...91
jseTerminateEngine..91
jseTerminateExternalLink...92
jseVarNeed ..92

SCRIPTEASE JAVASCRIPT LANGUAGE 93

Basics ...94
Case sensitivity ..94
Whitespace characters..95
Comments ..95
Expressions, statements, and blocks ..96
Identifiers ...97
Prohibited identifiers..98
Variables ..98
Variable scope..98
Functions..99
Function scope ...99

Data types ..100
Primitive data types ...101
Composite data types ...102
Special values ..104

Automatic type conversion...105
Properties and methods of basic data types ...106

.toString()...106

.valueOf()...106
Operators...106

Mathematical operators..106
Bit operators...108
Logical operators and conditional expressions ..108
typeof operator...110

Flow decisions statements ..111
if...111
else ...111
while ..112
do {...} while..112
for...113

8 ScriptEase™ ISDK/Java

break ..114
continue..114
switch, case, and default ..114
goto and labels ...115
Conditional operator ? : ...116

Functions ...117
Function return statement ..117
Passing variables to functions ..118
Function properties -- arguments[] ..118
Function recursion ...119
Error checking for functions ..119
The main() function ...119
The cfunction keyword ..120

Arrays ..121
Creating arrays ...122
Methods and properties of arrays...122

Objects ...124
Predefining objects with constructor functions..124
Methods - assigning functions to objects ...125
Object prototypes...126
for . . . in...127
with ..127

Dynamic objects..128
._get(property, ExpectCall)..128
._put(property, value) ..129
._canPut(property) ...129
._hasProperty(property) ...129
._delete(property)...129
._defaultValue(hint) ...129
._construct(. . .) ..130
._call(. . .) ...130
._operator(op,operand)...130

The global object and its properties ..132
Properties of the global object ...132
Methods of the global object..132

Exception Handling via Scripts ...134
Preprocessing ..135

Preprocessor Directives ...135

ScriptEase™ ISDK/Java 9

INTEGRATING THE SCRIPTEASE DEBUGGER 139
Using a Nombas protocol model ..139

Defining your own protocol model ..140

Code changes to your application ...140
Set Options...140
Add files to your project ..140
Update your ToolkitAppData structure and jseopt.h ...141
Initialize debugging ...141
Call the debugger hook ..142
Terminate debugging ...143
Example: Modifying your JSEOPT.H file for debugging..144

LANGUAGE OBJECTS & LIBRARIES 145
ScriptEase Global Functions ...145

General...145
Conversion or casting ..148

The Buffer Object...150
Buffer Object Properties ..151
Buffer Object Methods ..152

The Date Object ..154
Instance Date methods ...155
Static Date methods ...159

The Math Object...160
Properties ...160
Methods ...161

The String Hybrid ..162
The String as data type...162
The String as object ...164

USING THE INTEGRATED DEBUGGER 167

Using the ScriptEase Debugger ...167
Components of main MDI window ...168
MDI windows ..169
Setting watches ..171
Setting breakpoints ..172

Main menu bar ...173

10 ScriptEase™ ISDK/Java

File menu ...173
Edit menu...174
View menu...176
Search menu...176
Debug menu...177
Window menu..178
Help menu..179

INDEX 181

Introduction: Integrating The ISDK/Java 11

Introduction:
Integrating The ISDK/Java

This chapter describes the methods for integrating the ScriptEase:ISDK/Java into your
application. Integration is comprised of three elements:
• the JseContext,
• method wrappers,
• JseVariables.

All methods mentioned here are fully described in the API chapter.

Unpacking and installing ScriptEase:ISDK
The package you received consists of 3 basic parts: the ScriptEase:ISDK Interpreter jar,
the ScriptEase Standard Function Library source code, and miscellaneous samples and
source files required to support the interpreter engine. Refer to the file README.TXT on
the first installation disk for any last minute information and for more details on the
installation procedure.

Integration overview
Integrating the ScriptEase interpreter with your application is a matter of including the
necessary files with your application and creating the required interfaces. The interpreter
is initialized with a call to jseInitializeExternalLink(), a static method of the Jselib object.
jseInitializeExternalLink() returns a JseContext object to be used throughout the scripting
session; its properties are set according to the parameters passed to
jseInitializeExternalLink(). These properties define the scripting session’s global
variables, functions, security, and operating parameters (such as error handling).

Although usually one JseContext is sufficient, you may use more than one JseContext to
create simultaneous and independent scripting sessions, with unique sets of global
variables and available functions.

For each method you want to make available, you must write a wrapper method that
converts variable types from JavaScript to Java and back. These methods must then be
assigned to the JseContext with calls to jseAddLibrary(). Nombas provides many sample
methods you can use or adapt to your needs; see the appendix for a full list.

Executing a script from within your application is done with a single call to jseInterpret().
While you are interpreting a script, all of the wrapper methods it contains have been
registered with the interpreter and can be called directly from your Java code via
jseCallFunction(), an instance method of a JseContext object.

12 ScriptEase:ISDK/Java 4.10

Initializing the ISDK
Your application class must implement COM.Nombas.jse.Isdk.Jse. This imports all of the
constants you need to interact with the ISDK. You can also implement some or all of the
following interfaces, depending on the needs of your application. Below are descriptions
of the functions you will need to write to complete these interfaces.

For example, your application object my be defined as:
 Public class myApplication implements Com.Nombas.jse.Isdk.Jse,
 JseErrorHandler
 {
 . . .
 }

In the description for the JseErrorHandler interface (found immediately below), there is a
sample implementation of the function required. You could add a function similar to it to
your class definition above.

interface JseErrorHandler:
jseErrorMessageFunc will be called whenever the interpreter encounters an error
condition. As indicated by its name, this function usually prints out an error message,
although this doesn’t have to be the case.

It requires two parameters, the relevant JseContext object and a string that describes the
error. (These parameters will be supplied by the system when it makes the call; what you
do with them is up to you.)

Here is an example of a simple jseErrorMessageFunc:
public void jseErrorMessageFunc(JseContext jsecontext,
 String ErrorString)
{
 System.out.print("Inside jseLibErrorWriteln\n");
 System.out.print("\nJavaISDK Error Handler Says: " +
 ErrorString + "\n");
}

interface JseContinueFunction:
jseMayIContinueFunc is called before the interpreter executes a script command. It
takes one parameter, the relevant JseContext. If jseMayIContinueFunc returns true,
execution will continue as normal; if it returns false, the script will be terminated.

Introduction: Integrating The ISDK/Java 13

You can use this function:
• to provide a debugging interface (use jseLocateSource() to retrieve the name and line

number of the current location in the script being run),
• as a callback monitoring function for your scripts,
• to call multitasking tickler routines, or,
• to check on external status such as the pressing of ctrl-C or break.

Note that including even a simple Continue function will slow execution noticeably,
so use it only if you really need to.

interface JseFileLocation:
jseFileFindFunc is called whenever the interpreter needs to open a file, taking a String
that is the path to the file to be opened. It determines whether the file is safe to open,
returning the full path to the file if it is and null if it is not. If the file is not found, you can
specify some alternate action. It requires three parameters: the relevant JseContext, a
String containing the file specification of the file the interpreter is trying to open, and a
boolean value. This last value is set to true if the file is included with a #link command;
otherwise, it’s set to false.
 public String jseFileFindFunc(JseContext jsecontext,
 String FileSpec,
 boolean FindLink)
If the interpreter is unable to find the file or is unable to open it, the function should
return null.

Note that these strings do not have to be filenames, but may be URLs, decoded strings, or
anything else your application uses as a source. See jseToolkitAppIO below for the
interface used to read these files.

interface JseToolkitAppIOInterface:
Implement this interface if your scripts will need to open files, whether as parameters to a
#include statement or as filenames passed to jseInterpret().

jseGetSource tells the interpreter how to open and read files for internal use. The action
performed depends on the third parameter, actionFlag, which will be one of the following
values: jseNewOpen, jseGetNext and jseClose.

jseNewOpen opens a file for reading; your function will return true if successful and
false if not.

jseGetNext reads the next line of the file; your function will return true if successful and
false if there are no more lines to read. The data read from the file must be stored in the
properties of the JseToolkitAppSource object passed in.

jseClose is sent when the file is ready to be closed; your function will return true if the
file was successfully closed and false if not.
 public boolean
 jseGetSource(JseContext jsecontext,

14 ScriptEase:ISDK/Java 4.10

 JseToolkitAppSource srcDesc,
 int actionFlag);
The interpreter will initialize the JseToolkitAppSource object (the second parameter to
jseGetSourceFunc).

The JseToolkitAppSource object has the following methods you may use to access and
set its data:

getLineNumber()
Gets the line number of the line currently being read. This is most commonly used
when debugging and for creating error messages.

getName()
This method is used when actionFlag is jseNewOpen. It returns the filename of the
file that is to be opened.

getUserData()
Retrieves the object previously set in a call to setUserData(). This object is not used
by the interpreter; it is provided as storage for any external data needed for proper
interpretation and execution of the file. The object will be returned.

setCode(String)
This method is used by the toolkit application to set the next line of source code.
This is set by the toolkit application when actionFlag is jseGetNext and
JseFileLocation.jseFileFindFunc returns true. string will be the next line of code in
the file being read.

setLineNumber(int)
Sets line number used by API for debugging and error messages. The line number is
automatically incremented each time JseFileLocation.jseFileFindFunc is called; this
function need only be called when line numbers are skipped to ensure that the line
number returned by error messages corresponds to the correct line.

setUserData(Object)
Set a generic object for use by the toolkit application. The ISDK core ignores this
value; it is provided as a place to store any data that will be needed for the correct
interpretation and execution of the file. To access the object, use the getUserData()
method.

The JseExternalLinkParameters object
The properties of this object determine how the interpreter will handle variables and other
aspects of the scripting session. It has two properties: jseSecureCode, and an options flag.

jseSecureCode is the path and filename of the script that handles the security for the

Introduction: Integrating The ISDK/Java 15

session. This is a JavaScript file, so it may be easily edited if you need to do so. The
format of this script is described later in this chapter.

The other property of a JseExternalLinkParameters object consists of one or more of the
following values or’d together:

jseDefault is a default value (equivalent to 0) you can use if you don’t wish to specify
any of the optional behaviors. You may use this value anywhere that requires flags to
indicate that the default values should be used.

Default_C_Behavior determines how the interpreter handles variables and arrays. If this
value is included in the options parameter, variables and arrays will be treated as they are
in C: variables are passed by reference rather than by value, and array arithmetic is
possible. All functions will behave as if they had been declared with the cfunction
keyword (see page 109).

Require_Function_Keyword determines whether the function (or cfunction) keyword
is required with all functions. Although this keyword is required in the ECMA JavaScript
specification, many implementations of JavaScript do not require it. You can force your
users to use the keyword by including this value in the options flag.

Require_Var_Keyword which determines whether your users may use variables that
have not been previously declared with the var keyword. This is permitted in JavaScript,
but all such variables are considered global variables. Include this flag to prohibit this
behavior.

Warn_On_Bad_Math determines whether or not illegal mathematical operations (such
as dividing by zero) will be flagged as an error or not. In JavaScript it is legal to divide a
number by zero; the value NaN (Not a Number) will be returned. Including
Warn_On_Bad_Math in the options parameter will generate an error condition if you try
to make invalid mathematical statements.

Creating a JseContext object
Most Integration:SDK API calls are methods of the JseContext object. An instance of this
object is used throughout the scripting session to maintain its state. It is created by
passing the JseToolkitApp and JseExternalLinkParameters objects to the Jselib method
jseInitializeExternalLink():
jsecontext = jselib.jseInitializeExternalLink(
 Object ToolkitAppObject,
 JseExternalLinkParameters LinkParms,
 String globalVarName,
 String AccessKey)
The first parameter is the application object (already described), which implements
whichever of the interfaces described that you want. The second parameter is an
initialized JseExternalLinkParameters object (also already described).

16 ScriptEase:ISDK/Java 4.10

The other two parameters are the name you wish to call the JavaScript global object and
the AccessKey you received when you registered ScriptEase:ISDK.

Security code
You may provide a security filter to prevent certain functions from executing and to limit
scripts to working in certain directories or files. The security filter is itself a script. It will
be called before the the user’s script is run, and before every non-secure function call.
The full path and filename to the file containing the code is passed to
jseInitializeExternalLink() when obtaining the JseContext.

The security script contains a SecurityGuard() function, and optionally may contain
SecurityInit() or SecurityTerm() functions. SecurityGuard() receives the name of the
function being called as its second parameter and tests to see whether the function call is
permitted or not. If SecurityGuard() returns true, the function is permitted; if it returns
false, the function may not be used. SecurityInit() is called before the script runs, and
SecurityTerm() is called when the script terminates.

Here is an example of a security file. This file is for an application that limits how users
may access the OpenDatabase() and CloseDatabase() functions. It also adds some stuff to
the PATH variable before running the script, and removes it when it is done.
function SecurityInit(SecurityVar)
{
 // initialize SecurityVar
 SecurityVar.TempDir = Clib.getenv("TEMP");
 AddPath(...add a few directories to PATH...);
 return true;
}
function SecurityTerm(SecurityVar)
{
 DeletePath(...remove stuff added to PATH...);
 return true;
}
function SecurityGuard(SecurityVar,testFunction,var1,var2,...)
{
 switch(testFunction)
 {
 case "OpenDatabase":
 //limit how users may use this function
 break;
 case "CloseDatabase":
 //limit how users may use this function
 break;

 default:
 // any other function is allowed
 return true;
 }
}

Introduction: Integrating The ISDK/Java 17

Testing the integration
To be sure your application has integrated the interpreter correctly, add a call to interpret
a test script. The script can be simply "a=1", for example:

jsecontext.jseInterpret(null, "a=1;", null,
 jseAllNew, JSE_INTERPRET_CALL_MAIN,
 null, null);

Add this function after the call to Jselib.jseInitializeExternalLink(). If you can compile,
link, and run this test code, then the interpreter has been successfully included in your
application and is functioning correctly.

Adding functions to the ScriptEase engine
Once you have initialized the interpreter and created a JseContext, you must register any
functions you want to make available to your users. This is a three step process:

• Write wrapper methods for the functions you wish to add to the function library.
The wrapper method retrieves the function arguments from the ScriptEase call,
translates the data from JavaScript to Java, makes your application call, and then
translates any Java values back into JavaScript for return.

• Every function you make available to your users must be entered into a function
library table. The function library table is an array of function descriptors
containing each function’s name as it will be called by your scripts, the
corresponding wrapper method, the minimum and maximum number of
arguments for the function, and a mask of function attributes. Data properties as
well as functions can be added to the table. The next section of this manual
describes some Jselib methods that help build a function library table.

• Call jseAddLibrary() (an instance method of the JseContext object) to register
the function library table(s) with the ScriptEase interpreter.

Creating a ScriptEase function library table
A ScriptEase function library table is an array of Function Descriptors. It specifies to the
interpreter the details of the methods to be added to the ScriptEase library. Each instance
of a Function Descriptor assigns the ScriptEase function its name, the Java function, and
the minimum and maximum number of arguments the ScriptEase function takes. There is
no predefined limit to the number of functions that can be specified in a Function Library
Table, nor is there any limit to the number of library tables that may be added to a given
JseContext.

18 ScriptEase:ISDK/Java 4.10

The Jselib object has a number of static methods to assist in building the table. Which
method you use depends on the type of function being added to the table:

Jselib.JSE_LIBOBJECT - This defines what is being added to the table as an object;
functions and variables using the other functions (listed below) will be added as
properties and methods of this object, until another call to JSE_LIBOBJECT defines a
new current object. If JSE_LIBOBJECT is not called, properties added with these
methods will be added to the global object.

Jselib.JSE_LIBMETHOD - To add a method or function to the current object. The
method will be added to the last object called with JSE_LIBOBJECT.

Jselib.JSE_PROTOMETH - Adds a method to the current object’s prototype.

Jselib.JSE_VARASSIGN - This creates a copy of an already existing variable and
assigns it to the current object.

Jselib.JSE_VARNUMBER - Assigns a numerical value as a property of the current
object.

Jselib.JSE_VARSTRING - Assigns a string value as a property of the current object.

Jselib.JSE_ATTRIBUTE - Creates an undefined variable with the specified attributes.
This method can also be used to change a variable’s attributes.

These methods have the following syntax:

JSE_LIBOBJECT(name, methodName, min, max, varAttr, funcAttr)

JSE_LIBMETHOD(name, methodName, min, max, varAttr, funcAttr)

JSE_PROTOMETH(name, methodName, min, max, varAttr, funcAttr)

JSE_VARASSIGN(name, variable, varAttr)

JSE_VARNUMBER(name, var_number, varAttr)

JSE_VARSTRING(name, var_string, varAttr)

JSE_VARATTRIBUTE(name, varAttr)

name is a string representing the name to give to your function in a script. This is the
name by which your users will use to refer to it.

methodName is the function called by the interpreter, i.e., the name of the wrapper
method that corresponds to the function listed above or an inner class implementations of
a JseWrapperFunction.

min is used to specify the minimum number of parameters that can be passed to the
function.

max is used to specify the maximum number of parameters that can be passed to the
function. If the number of parameters is unknown, set MaxVariableCount to -1. Set the
maximum and the minimum to the same value to specify an exact argument count. If a
script calls a function whose parameters do not meet the function parameter
requirements, the script will be terminated with appropriate error handling.

Introduction: Integrating The ISDK/Java 19

Note that min and max represent the number of parameters passed to the JavaScript
function, and not the number of parameters for the wrapper method. wrapper methods
take only one parameter, the scripting session’s JseContext object. The parameters passed
to the function must be extracted as described later in this chapter.

varAttr is a bitwise-or of one or more of the following values:

jseDefaultAttr is used as a place holder for this parameter when you don’t want to
use any of the other options.

jseDontEnum This prevents the property or method from being listed in for...in
statements.

jseDontDelete Prevents the delete operator from being used on the variable.

jseReadOnly Makes the property or method read only.

jseImplicitThis Add ‘this’ to the prototype chain (functions only).

funcAttr is a bitwise-or of one or more of the following:

jseFunc_Default to specify the default behavior.

jseFunc_CBehavior specifies that the function uses C behavior, passing parameters
by reference.

jseFunc_Secure indicates that the function is safe to call and does not need to pass
through the security filter. If this is not supplied, a security risk is assumed and the
function must pass through the security filter before being executed. If there is no
security filter, this option does nothing.

variable is a variable that has already been included in the function library table.
JSE_VARASSIGN adds a copy of this variable to the current object.

var_number is a number variable or value to be assigned to the current object.

var_string is a string variable, enclosed in quotes, or a literal string enclosed in quotes
("\"literal string\"", e.g.), to be added as a property of the current object.

Initializing a ScriptEase function library table
A function library table is initialized and added to a specific context by calling
jseAddLibrary(). It is defined as follows:

Void jseAddLibrary(
 String objectVariableName,
 JseFunctionDescription functionList[],
 JseLibrary libraryObject)

objectVariableName is the name of the object variable to which the library is to be
attached. All methods in the library will become methods of this object. If this is null, the
method will be added to the global object and will be available as a global function...no
object scoping is necessary to call such a function.

20 ScriptEase:ISDK/Java 4.10

functionList[] is the array of ScriptEase function descriptors to be added to the library,
created with the methods described above.

libraryObject is an instance of the library being added; all functions in function list must
be methods of this object. The libraryObject class must implement the JseLibrary
interface, which contains these two methods:

 public JseLibrary
 jseLibraryInitFunction(JseContext jsecontext);

This method is used to initialize any type of library-specific structure that the library
may need to access. For example, the library may need to keep track of files opened.
This method ay return same object as this or create a new one.

 public void jseLibraryTermFunction(JseContext jsecontext);

This function is called when the library is terminated. It can be called multiple times,
and every call to the jseLibraryInitFunction will have a matching call to
jseLibraryTermFunction. Any initialization performed in the initialization function
should be cleaned up here.

Writing ScriptEase function wrappers
Writing wrapper methods for new JavaScript functions is a three part task:

• Retrieve the variables passed as parameters to the function. You must first get a
handle to the variable (a JseVariable), and then extract its data with one of the
jseGetXXX() functions. This translates them from ScriptEase to Java for use in
your code;

• Call your internal function or functions, using the Java variables retrieved by the
previous step;

• Set the return codes and JseVariable values to be returned to the script.

All wrapper routines have the following syntax:
 public void functionName(JseContext jsecontext)
The parameters passed to the JavaScript function functionName must be extracted as
described below. The wrapper method itself takes only one parameter, the relevant
JseContext. You can use an inner class method instead of writing a wrapper function.

Retrieving function arguments in a wrapper method
A JseContext object has two methods for retrieving function arguments: jseFuncVar()
and jseFuncVarNeed(). The method you use depends on the type of variable, your
application environment, and your programming style. Each returns a handle to a variable

Introduction: Integrating The ISDK/Java 21

you can use to retrieve or store a value passed from a script; the first parameter of each
function is the offset (in the parameter list) of the variable desired.

jseFuncVar() returns the variable at the specified offset without checking its type;
jseFuncVarNeed() has a second parameter that specifies the type or types of variable that
will be accepted, generating an error if an appropriate variable is not found.

If no variable was found at the supplied offset, both functions return null and generate an
error (the min/max values supplied when the function was added to the library may have
already caught this error).

jseFuncVarNeed()
jseFuncVarNeed() will only retrieve variables of the type(s) specified by the second
parameter. The script being interpreted will generate an error message and return null if
the appropriate variable is not found. The variable’s type is checked just prior to
retrieving its handle, so the handle returned can be relied upon to be a valid JseVariable
and of the type expected.
 JseVariable
 JseContext.jseFuncVarNeed(int ParameterOffset,
 int Varneeded);

jseFuncVarNeed() takes two parameters: the offset of the parameter in the parameter list
(0 for the first parameter, 1 for the second, etc.); and a value indicating the argument type
expected by the script's function. This value may be one or more of the following or’d
together, depending on the variable type you expect to receive:

 JSE_VN_NUMBER JSE_VN_BYTE

 JSE_VN_BOOLEAN JSE_VN_BUFFER

 JSE_VN_NULL JSE_VN_OBJECT

 JSE_VN_FUNCTION JSE_VN_ANY

 JSE_VN_INT jselib.JSE_VN_NOT()

 JSE_VN_STRING jselib.JSE_VN_CONVERT(from, to)

If a variable may be of more than one possible type, all possible types should be supplied,
joined by a bitwise or (for example, JSE_VN_STRING | JSE_VN_NUMBER).

The last three values on the list are used when the variable type is unknown and in cases
where more than one variable type is expected. JSE_VN_ANY will accept a variable of
any type. Jselib.VN_NOT() (a static method of the Jselib object) will accept a variable of
any type other than those passed to the method. If you are passing more than one value to
Jselib.VN_NOT, they should be joined by an or (|). Jselib.VN_CONVERT() (also a static
method of the Jselib object) converts a variable to a specific type. It takes two
parameters: an or mask of variable types to be accepted, and the type (one of the values
listed above) that the variable is to be converted to. Jselib.VN_CONVERT() cannot
convert to types of JSE_VN_BYTE, JSE_VN_INT, or JSE_VN_FUNCTION.

22 ScriptEase:ISDK/Java 4.10

jseFuncVarNeed() returns null on failure. If null is returned, your error routine will have
been called, and the script being interpreted will abort when it returns from your wrapper
method.

jseFuncVar()
If a function expects a variable of unknown type or if the wrapper method does its own
type checking and conversion, use jseFuncVar() to obtain the variable’s handle. It
retrieves a variable handle regardless of its type. jseFuncVar() is prototyped as:
 JseVariable
 JseContext.jseFuncVar(int ParameterOffset);
Like jseFuncVarNeed(), jseFuncVar() returns null if it is unable to retrieve a variable at
the specified offset. If null is returned, your error routine will have been called, and the
script being interpreted will abort when it returns from the wrapper method.

Getting Data From JseVariables
Once you have a JseVariable handle, the data can be retrieved by calling the appropriate
jseGetXXX() function. There is a specific get function for each of the ScriptEase types
(jseGetNumber() and jseGetString(), e.g.). The methods jseGetLong() and jseGetByte()
may be used to ensure that a number can be converted to an integral or byte value. Like
jseFuncVar() and jseFuncVarNeed(), these are all instance methods of JseContext.

For example, if your function had one argument that was a number, you would use
jseGetNumber() to get the value of the Scriptease variable.

 // get the value from a jseLongVar.
 int numArgumentVal = jsecontext.jseGetNumber(jseLongVar);
 System.out.print(numArgumentVal);

If you used jseFuncVar() to get the handle to a function argument, first check the
ScriptEase type before accessing its data with jseGetType(). jseGetType() returns one of
the following values: jseTypeBoolean, jseTypeNull jseTypeNumber, jseTypeString,
jseTypeBuffer, jseTypeObject, or jseTypeUndefined.

Assigning values to JseVariables
Setting the value of a JseVariable is similar to getting the value. Instead of using a
jseGetXXX() function, use one of the jsePutXXX() functions. For example, if your
function had one argument that was an integer, you would use jsePutLong() to set the
value of the ScriptEase variable.

 longValue = 1000 * 1000;
 jsecontext.jsePutLong(jseLongVar, longValue);

To ensure that the new value is of the appropriate data type for the JseVariable, use
jseConvert() before assigning the new value.

Introduction: Integrating The ISDK/Java 23

The jsePutXXX() functions will have a permanent effect only if the wrapper method is
for a cfunction or an object, as only these variables are passed by reference.

JseVariable Attribute Flags
This is an OR'ed set of flags describing the attributes of the variable. The flags are as
follows:

jseDefaultAttr - The default attributes are used (no flags are set)

jseDontDelete - This variable cannot be deleted. If, within a script, the user calls 'delete
[variable]', then no action is taken. This does not affect calls to jseDeleteMember().

jseDontEnum - This variable is not enumerated within for . . . in loops. Therefore, if it is
a member of an object and the user enumerates the members of the object using a for . . .
in loop, this member will be skipped. jseGetNextMember() always returns all members.

jseImplicitParents - This is an attribute that applies only to local functions. It allows the
scope chain to be altered based on the __parent__ property of the 'this' variable. If this
flag is set, the __parent__ property is present, and a variable is not found in the local
variable context (activation object), then the parents of the 'this' variable are searched (as
long as there is a __parent__ property) before searching the global object. Here is an
example, assuming that jseImplicitParents is set on function foo().
 var a;
 a.value = 4;
 var b;
 b.__parent__ = a;
 b.foo = foo;
 b.foo();
 function foo()
 {
 value = 5;
 // This will actually set a.value to 5
 }
jseImplicitThis - This attribute applies only to local (script) functions. If this flag is set,
then the 'this' variable is inserted into the scope chain before the activation object. This
means that if a variable is not found in the local variable context (activation object), the
interpreter will then search in the current 'this' variable of the function.

jseReadOnly - This is a read-only variable. Any attempt to write to the variable will fail
(nothing will happen).

Returning values from a wrapper method
To return a primitive value from a wrapper method, use the appropriate jseReturnXXX()
method. To return a long, use jseReturnLong(), e.g. Both require only one parameter, the
value to be returned.
// Return a long from a ScriptEase wrapper method.
jsecontext.jseReturnLong(3006);

24 ScriptEase:ISDK/Java 4.10

// Return a float from a ScriptEase wrapper method.
jsecontext.jseReturnNumber(22.22);

Returning an object requires a call to jseReturnVar(). jseReturnVar() can be used to
return data of any type, although it is easier to use the typed functions (for example,
jseReturnLong(),) if possible. jseReturnVar() puts a generic data type on the jseStack to
be returned to the script.

jseReturnVar() takes two arguments:
 jsecontext.jseReturnVar(JseVariable, jseReturnType);
The first argument is the JseVariable to return, and the second argument defines the
return action. This argument tells the ScriptEase engine what to do with the variable once
the function has returned and the statement that called it has completed. Possible values
for this parameter are:

jseRetTempVar - the variable will be destroyed when popped from the stack.Use
this option when your wrapper method creates a variable. jseRetTempVar will delete
the variable when it is no longer needed, so you do not need to call
jseDestroyVariable() on it.

jseRetCopyToTempVar - the variable is copied, and the temporary copy is put on
the stack, to be destroyed when popped. The original variable must still be
destroyed.

jseRetKeepLVar - the variable will not be put on the stack. It will not be
automatically destroyed; you must call jseDestroyVariable() to delete it.

In nearly all cases this should be set to jseRetTempVar.

Using inner class methods
You may use an inner class method instead of a wrapper method if you prefer. Any of the
samples in this manual can be easily converted to inner class methods by embedding
them in the following code:
 public JseLibraryFunction MySumFunction()
 {
 return new JseLibraryFunction()
 {
 public void libraryFunction(JseContext jseContext)
 {
 /* body of function goes here */
 }
 };
 }
Unless otherwise stated, inner class and wrapper methods are treated identically
throughout the API and this manual.

Introduction: Integrating The ISDK/Java 25

Passing and returning simple data types
Passing and returning one of the primitive data types (numbers, strings and booleans)
involves calling jseFuncVarNeed() to get the appropriately typed jseVariable and then
calling jseGetXXX() to extract its value.

The following example is a wrapper for a function that simply adds two integers and
returns the result. It would be invoked from the script source like this:
 sum = MySumFunction(var1, var2);
Here is the wrapper method:
 public void MySumFunction(JseContext jsecontext)
 {
 JseVariable jseInt1;
 JseVariable jseInt2;
 int Cint1;
 int Cint2;
 int SumInt;

 jseInt1 = jsecontext.jseFuncVarNeed(0, JSE_VN_NUMBER);
 jseInt2 = jsecontext.jseFuncVarNeed(1, JSE_VN_NUMBER);
 if (jseInt1 == null || jseInt2 == null)
 {
 return;
 }
 Cint1 = jsecontext.jseGetLong(jseInt1);
 Cint2 = jsecontext.jseGetLong(jseInt2);

 SumInt = Cint1 + Cint2;

 jsecontext.jseReturnLong(SumInt);
 }
If an invalid parameter is passed in, jseFuncVarNeed() returns null and calls the user-
defined error function. The interpreter doesn’t quit until the wrapper method ends, so you
must exit the function before it tries to use the bad data. Calls to jseFuncVarNeed() are
usually put at the beginning of the function to ensure that all of the data is valid before
continuing with the function.

If the call to jseFuncVarNeed() is successful, it returns a variable that holds the value of
the corresponding parameter. Call jseGetLong() to extract the value from the variable.

Returning an integer requires just one function call, jseReturnLong(). This function
assigns the Java variable’s value to the JseContext. The interpreter will internally allocate
and free the resources needed to hold the value.

Passing and returning strings and boolean values is essentially the same procedure.
Strings and booleans both have their own type parameters to jseFuncVarNeed():
JSE_VN_STRING for strings and JSE_VN_BOOLEAN for boolean values. Use
jseGetString() to extract data from strings and jseGetBoolean() to extract data from
booleans. Use these functions in place of jseGetLong() in the example. To return strings
or booleans use jseReturnVar().

26 ScriptEase:ISDK/Java 4.10

For example, here is a script that passes and returns a string:
 public void PromptAndGetS(JseContext jsecontext)
 {
 java.io.BufferedReader in = new java.io.BufferedReader(
 new java.io.InputStreamReader(system.in));

 String foo = "";
 JseVariable MyjseBuffer;
 String szTextBuffer;

 MyjseBuffer = jsecontext.jseFuncVarNeed(0, JSE_VN_STRING);
 szTextBuffer = jsecontext.jseGetString(MyjseBuffer);
 try{
 foo = in.readLine();
 }
 catch (java.io.IOException ioe);
 jsecontext.jsePutStringLength(MyjseBuffer, szTextBuffer,
 szTextBuffer.length());
 jsecontext.jseReturnVar(MyjseBuffer, jseRetCopyToTempVar);
 return;
 }

Passing simple data types by reference
In addition to its return value, your wrapper method can return data directly via its
parameters. This is not possible in Java, but is allowed in JavaScript functions declared as
cfunctions (or when the jseDefault_C_Behavior flag is set), since cfunctions receive
parameters passed by reference and not by value. For example, suppose you had a
JavaScript function that modified a number in some way:
num = 10;
ModifyNumber(num);
if(num == 0) exit(EXIT_ERROR);

Here is wrapper method for such a function:
void ModifyNumber(jseContext jsecontext)
{
 double jseL;
 jseL = jsecontext.jseFuncVar(0);

 // If returned null this type can't convert to an integer
 if (null != jsecontext.jseConvert(jseL, jseTypeNumber))
 {
 jsecontext.jsePutNumber(jseL, GetANumber());
 }
 return;
}

When this function returns, numwill have been set to the value returned by
GetANumber().

Introduction: Integrating The ISDK/Java 27

In the example above there is no type checking on the JseVariable. Its type is of no
importance because we will use jseConvert() to ensure that the variable is of the correct
type.

You still need to associate the parameter offset with a JseVariable. Pass the parameter
offset to jseFuncVar() to get a JseVariable. Now, convert the JseVariable into one that
will hold a long with jseConvert(). jseConvert() requires the JseVariable to convert and
the new variable type. In this case, we convert numto jseTypeNumber. Finally, the value
returned by GetANumber() is passed to jsePutNumber(). Calling jsePutNumber() inserts
the Java variable's value into the JseVariable. Upon returning to the script, the script’s
variable holds the value returned by the function GetANumber().

Working with objects
Passing and returning objects involves an additional step. As with primitive data types,
first get a JseVariable for the object with jseFuncVarNeed(). Then get a handle to the
property by calling jseMember(). The data may now be extracted from this second
JseVariable with a call to one of the jseGetXXX() functions.

jseMember() has three parameters: the name of the object whose members are being
accessed, the name of the property being accessed, and its data type.
public void jseObjectFunc(JseContext jsecontext)
{
 JseVariable jseVarObject;
 JseVariable jseVar;
 int integer = 0;
 String string = "";

 jseVarObject = jsecontext.jseFuncVarNeed(0, JSE_VN_OBJECT);
 if (jseVarObject == null) return;
 jseVar = jsecontext.jseMember(jseVarObject, "MyInt",
 jseTypeNumber);
 if (jseVar != null)
 {
 integer = (int)jsecontext.jseGetLong(jseVar);
 }
 jseVar = jsecontext.jseMember(jseVarObject, "MyString",
 jseTypeString);
 string = jsecontext.jseGetString(jseVar);
 System.out.print("string = " + string + "integer = " +
 new Integer(integer).toString() + "\n");
}
The example above gets an object with two properties from the interpreter. One of the
properties (MyString) is a string, and one of them (MyInt) is a number; they will be
stored in the variables integer and string, respectively, and printed to the screen.

Since jseMember() doesn’t create a new JseVariable reference in creating new object
properties, you shouldn’t try to destroy them when you are through with them. Child
variables will be cleaned up by the interpreter engine when the parent object is destroyed.

28 ScriptEase:ISDK/Java 4.10

Functions with a variable number of arguments
Unlike Java, JavaScript functions may accept a variable number of arguments. For
example, consider the following function, which takes a string as its first parameter, and
has an optional second parameter, a number:
ret = OneOrTwoArgs("My Dog Has Fleas"); // returns "M"
ret = OneOrTwoArgs("My Dog Has Fleas", 7); // returns "H"
If the integer parameter is not provided, the function returns the first character of the
string. If an integer is provided, the character returned will be at the index position
specified by the integer.

Since the first argument is mandatory, there is no need to treat it differently. It may be
accessed just as in the previous examples. However, you must determine whether the
second parameter exists before you try to extract a value from it. The function
jseFuncVarCount() returns the number of parameters passed to the ScriptEase function. If
the variable exists, make the usual jseFuncVarNeed() and jseGetLong() calls to check the
JseVariable type and extract its data.
public void OneOrTwoArgs(jseContext jsecontext)
{
 JseVariable MyjseString;
 JseVariable MyjseOptNum;
 String MyJavastr;
 int MyJavaoptNumber;
 int index;

 MyjseString = jsecontext.jseFuncVarNeed(0, JSE_VN_STRING);
 if (MyjseString == null)
 {
 return;
 }
 int str_len;
 MyJavastr = jsecontext.jseGetString(MyjseString);
 MyjseOptNum = 0;
 if (jsecontext.jseFuncVarCount() == 2)
 {
 MyjseOptNum = jsecontext.jseFuncVarNeed(1, JSE_VN_NUMBER);
 MyCoptNumber = jsecontext.jseGetLong(MyjseOptNum);
 }
 if (MyjseOptNum < MyJavastr.length) index = MyjseOptNum;
 else index = 0;
 jsecontext.jseReturnLong(MyJavastr);
 return;
}

Introduction: Integrating The ISDK/Java 29

Accepting a ScriptEase argument of unknown type
If you do not know what type of variable is to be retrieved, you can use the function
jseFuncVar() instead of jseFuncVarNeed(). jseFuncVar() will accept a variable of any
type. You must then call jseGetType() to determine the variable’s type. jseGetType()
returns one of the following values, corresponding to the variable’s type:
jseTypeUndefined, jseTypeObject, jseTypeString, jseTypeBuffer, jseTypeNumber,
jseTypeBoolean, jseTypeNull, or jseTypeNumber.

The following example demonstrates jseFuncVar().
public void jseExternalLibFunc(JseContext jsecontext)
{
 JseVariable jseMysteryVar;
 String MyString;
 double MyNumber;
 boolean MyBoolean;

 jseMysteryVar = jsecontext.jseFuncVar(0);
 switch(jsecontext.jseGetType(jseMysteryVar))
{
 case jseTypeUndefined:
 /* Can set to a jseType here */
 jsecontext.jseConvert(jseMysteryVar, jseTypeNumber);
 break;
 case jseTypeString:
 MyString = jsecontext.jseGetString(jseMysteryVar);
 break;
 case jseTypeLong:
 MyNumber = jsecontext.jseGetNumber(jseMysteryVar);
 break;
 case jseTypeBoolean:
 MyBoolean = jsecontext.jseGetBoolean(jseMysteryVar)
 break;
 default:
 //ignore boolean, buffer and object values
 }
 return;

}

This function executes different code depending on the variable type passed. The correct
data extraction function will be called against the ScriptEase variable no matter what the
data type is.

Calling interpreted ScriptEase functions
When a script is being interpreted with jseInterpret() or has been loaded in jseInterpret(),
its functions are registered with the interpreter. You can then call these functions directly

30 ScriptEase:ISDK/Java 4.10

from Java with jseCallFunction(); this saves the interpreter from having to re-interpret the
function. You can use jseGetNextFunction() to list all available local functions in a given
JseContext.

There are five steps to calling previously loaded (via jseInterpret()) functions:
• Get a handle to the function variable with jseGetFunction(),
• Create a JseStack to manage the parameters passed to the function,
• Put the parameter variables on the stack with jsePush(),
• Make the function call with jseCallFunction(), and
• Destroy the JseStack with jseDestroyStack().

jseGetFunction() requires two parameters: the name of the function being called, and an
error message flag. Set the flag to true if you want to use the default error handling
system if the function cannot be found, and false if you want to use a different error
handling system. If false, jseGetFunction() returns null if the variable is not a function or
the processor cannot find the function, and you can take appropriate action.
jseGetFunction() returns a handle to the function variable, which will be needed for the
call to jseCallFunction().

Creating a jseStack is easily done by calling jseCreateStack(). It returns a handle to the
newly created stack, which is used in subsequent calls to jsePush() and jseCallFunction().

Next use jsePush() to put JseVariables on the stack. You must call jsePush() once for
each argument you are passing to the function. jsePush() takes three parameters: the
handle of the stack you’re working on, the variable to be pushed to the stack, and a
boolean flag. Set this flag to true if you want the JseVariable to be automatically
destroyed when the stack is destroyed (with jseDestroyStack(), i.e.). If it is set to false,
you will have to call jseDestroyVariable() yourself to destroy the variable and free the
resources allocated.

Now you are ready to make the function call with jseCallFunction(). jseCallFunction()
takes four parameters: a JseVariable for the function being called, the JseStack, an array
variable to store whatever value the function returns (the return value will be placed at
offset 0 of this array), and a JseVariable to be used as the "this" variable within the
function call.

jseCallFunction() returns true if the function was successfully executed, otherwise it
returns false.

Creating and destroying jseVariables
ScriptEase variables are created with one of the following jseCreateXXX() methods, each
of which creates and returns a variable of the specified type. All variables created with
these methods must be explicitly destroyed with jseDestroyVariable() when you are done
using it.

Introduction: Integrating The ISDK/Java 31

jseCreateVariable(int VType);
jseCreateSiblingVariable(jseVariable OlderSiblingVar,
 int ElementOffsetFromOlderSibling);
jseCreateLongVariable(int value);
jseCreateConvertedVariable(JseVariable VariableToConvert,
 int ConversionType)

There are two ways to destroy a ScriptEase variable:

• jseDestroyVariable() will destroy any variable created with the above calls.
• If RetAction is jseRetTempVar, jseReturnVar() will destroy the JseVariable

after it is used. Do not destroy the variable explicitly if it is used as a return
variable in this manner.

Interpreting a script with jseInterpret()
A script is executed with the JseContext method jseInterpret(). jseInterpret() takes seven
parameters that indicate which script is to be run and how it will inherit variables from
the context it is called from. Although there is a large number of possible combinations of
these parameters, the three most commonly used situations are described at the end of
this section.
boolean
jsecontext.jseInterpret(
 String sourceFile,
 String sourceText,
 byte[] pretokenizedBuffer,
 int jseNewContextSettings,
 int howToInterpret,
 JseContext localVariableContext,
 JseVariable[] returnVar);
jseInterpret() returns a boolean value to indicate the success or failure of the script,
returning true if the script executed completely, and false if it did not. This value is in no
way related to the value returned by the script, although if jseInterpret() returned false, no
value will be returned from the function, since it failed to interpret.

sourceFile is a string containing the filename and path to a ScriptEase script file or null if
you are interpreting ScriptEase source from memory. Any parameters that need to be
passed to this file for execution should be passed in the following parameter
(sourceText).

sourceText is either a string containing a block of ScriptEase code to be interpreted or
the optional arguments to pass to the script (if interpreting code from a file).

howToInterpret specifies the interpreter’s mode:

JSE_INTERPRET_NO_INHERIT indicates that the new JseContext should not
inherit global variable and functions from its parent JseContext.

32 ScriptEase:ISDK/Java 4.10

JSE_INTERPRET_CALL_MAIN instructs the interpreter to run the main()
function following any global code.

JSE_INTERPRET_LOAD - Interpret and execute the script within the current
JseContext so that the interpreted functions and variables are available to subsequent
calls to jseInterpret(). (This option is maintained for backwards compatibility with
earlier versions of the ISDK. We recommend that you use
JSE_INTERPRET_DEFAULT instead.

JSE_INTERPRET_DEFAULT - Variables and methods will be inherited from the
calling context, and main will not be called.

The jseNewContextSettings parameter determines which of the jseContext elements will
be created anew in the child JseContext. If a new context element is not specified, it will
be inherited from the parent JseContext. Use one or more of the following flags or’ed
together:

jseNewNone - Do not create any new elements.

jseNewDefines - Create new defines.

jseNewLibrary - Create new function libraries.

jseNewGlobalVarGroup - Create a new global variable group.

jseNewFunctions - Create new scripted functions.

jseNewAtExit - Create new atexit functions.

jseNewSecurity - Reinitialize the security script (i.e., call SecureInit() before
running the script; see page 9).

jseAllNew - Create new elements for all categories above, except for functions,
which will be inherited from the parent JseContext.

LocalVariableContext tells a new level of jseInterpret() that local variables of that
JseContext should be treated as global variables of the new interpretation. For example,

foo()
{
 a = 4;
 interpret("a++");
}

is only identical (in result) to,
foo()
{
 a = 4;
 a++;
}

Introduction: Integrating The ISDK/Java 33

- if the new level of interpret knows to make local variables of foo() be global variables
of the new interpret.

ReturnVar - If a script includes a return or exit statement and return value, it will be
stored in ReturnVar[0] when jseInterpret() returns. If there is no specified return variable,
an undefined value will be returned.

If JseInterpret() returns true then you are responsible for destroying this returned variable
with jseDestroyVariable(). Pass in null if you do not need to receive the returned value.

jseInterpret() - flags for the most common situations
These are the three most commons situations encountered when executing a script:

• You want to execute the code as if it were the only thing running; all variables
created will be destroyed.

• You want your code to be able to use all variables that are currently available for
the jseContext, and all variables created by the script will remain after the script
terminates.

• You want your code to be able to use all variables that are currently available for
the jseContext, but you don’t want the variables created by the script to remain
after the script terminates.

The flags to use for the jseNewContextSettings and howToInterpret for these three
situations are as follows:

1. jseNewContextSettings = jseAllNew & ~jseNewSecurity

 howToInterpret = JSE_INTERPRET_CALL_MAIN |

 JSE_INTERPRET_NO_INHERIT

2. jseNewContextSettings = jseNewNone

 howToInterpret = JSE_INTERPRET_CALL_MAIN

3. jseNewContextSettings = jseNewFunctions

 howToInterpret = JSE_INTERPRET_CALL_MAIN

34 ScriptEase:ISDK/Java 4.10

Application Programming Interface 35

Application Programming Interface

The following methods are listed for reference in alphabetical order.

A Note on Terminology

jseContext refers to the JseContext class. Most of the API functions are members of
this class, so when a function template reads:
jseVariable jseContext.jseActivationObject()
The “jseContext.” indicates that jseActivationObject() is a member of the
JseContext class.

jsecontext (lower-cased) refers to a specific instance of this class. It is used in code
samples and would be replaced in actual code by another JseContext instance you are
actually working with.

If the code fragment was:
a = jsecontext.jseActivationObject(),
and your JseContext instance was, for example, “foo”, you might have,
jseContext foo = …;
A = foo.jseActivationObject()

JseActivationObject

DESCRIPTION Get the local variable object for the function currently being

executed.

SYNTAX JseVariable
JseContext.jseActivationObject();

RETURN This method returns the current activation object, whose members
are the local variables, of the last local (script) function. Thus the
local variable Aa@ of the last script function would be a member of
this object.

SEE ALSO jseGlobalObject

36 ScriptEase:ISDK/Java 4.10

jseAddLibrary
DESCRIPTION Add an external method library to a given JseContext.

SYNTAX void JseContext.jseAddLibrary(string
 objectVariableName,
 JseFunctionDescription[] FunctionList,
 JseLibrary LibraryObject);

PARAMETERS objectVariableName - The name of the object the properties will be
associated with. If null is supplied in this field, then the global
object will be used.

LibraryObject - the object which implements JseLibrary, associated
with this library.

functionList - An array of function descriptions to add to the
context.

COMMENTS Use this function to add library functions to the jseContext. A static
table of JseFunctionDescription structures is defined, and this table
is passed as the second parameter to the function.

Here is an example of usage:
JseFunctionDescription[] myFuncs={
JseLib.JSE_LIBMETHOD(Afoo,@ AfooFunc@)
0,0, JseDefaultAttr, JseDefaultAttr)
};
jsecontext.jseAddLibrary(“MyFuncs”,myFuncs,
MyLibraryObject);

RETURN None.

SEE ALSO jseFunctionDescription, jseLibraryData

Application Programming Interface 37

jseAppExternalLinkRequest
DESCRIPTION Create a new JseContext using the jseAppLinkFunc provided in the

jseExternalLinkParameters structure.

SYNTAX JseContext.
jseAppExternalLinkRequest(boolean Initialize)

PARAMETERS Initialize - The second parameter passed to the AppLink function.

COMMENTS If the applicable object implements the JseAppExternalLinkRequest
interface, it is used to create a new JseContext. This function should
first be called with true as the second parameter to initialize a new
context, and then be called a second time with false in order to clean
up the returned context.

EXAMPLE newcontext = jsecontext.JseAppExternalLinkRequest(
true);

if(newcontext == null)
PrintError(AInitialization failed@);

/... Use the new context here ... */
newcontext.jseAppExternalLinkRequest(

false);
RETURNS null on failure, otherwise a valid JseContext.

NOTE This function is not used frequently. You should use
jseInitializeExternalLink() instead. It is provided for compatibility
with the C version of the ScriptEase API.

SEE ALSO jseInitializeExternalLink, jseTerminateExternalLink

38 ScriptEase:ISDK/Java 4.10

jseAssign
DESCRIPTION Copy the current value of one variable to another variable.

SYNTAX boolean
JseContext.jseAssign(JseVariable destVar,

 JseVariable srcVar);
PARAMETERS destVar - The ScriptEase variable to set

srcVar - The ScriptEase variable to assign from.

This function assigns the value of the ScriptEase data defined by
destVar to be equivalent to the value of the ScriptEase data defined
by srcVar. This function provides the same functionality as the >==
operator.

RETURN Return boolean true for success, else it returns false if the
assignment was unsuccessful.

SEE ALSO jseGetType, jseConvert, jseCreateConvertedVariable

jseBreakpointTest
DESCRIPTION Test to see if the current line is a valid breakpoint.

SYNTAX boolean
JseContext.jseBreakpointTest(String fileName,

 int lineNumber);
PARAMETERS fileName - Name of the file to be tested.

lineNumber - The line number to check for breakpoint

COMMENTS Check if currently-running script has a breakpoint in this fileName
at this lineNumber. This function is provided to facilitate
debugging.

RETURN Return true if on a valid breakpoint, else return false.

SEE ALSO jseLocateSource

Application Programming Interface 39

jseCallAtExit
DESCRIPTION Add a function to be called when exiting a jseContext

SYNTAX void
JseContext.jseCallAtExit(String exitFunction,

 object exitObject);
PARAMETERS exitFunction - The function to call at exit.

exitOject - the object of which this function is a method.

COMMENTS The object must have a method of the given name of the format
Avoid function(JseContext);@. This method will be called when the
top-level interpreted JseContext is destroyed. Any number of
functions may be registered with jseCallAtExit(); they will be called
in the reverse order in which they=re added. At-exit functions are
called regardless of the reason for the exit. If an error condition
exists, the error flag will be turned off while calling these functions.
These functions will be called before any libraries added with
jseAddLibrary are terminated.

Note: this function is very “un-Java-like.” It has this format for
compatibility with the ScriptEase ISDK/C API.

RETURN None.

SEE ALSO jseAtExitFunc

40 ScriptEase:ISDK/Java 4.10

jseCallFunction
DESCRIPTION Call a ScriptEase function.

SYNTAX boolean
JseContext.jseCallFunction(JseVariable jsefunc,

JseStack jsestack,
JseVariable[] returnVar,
JseVariable thisVar);

PARAMETERS jsefunc - The function to be called.

jsestack - The parameters to pass to the specified function.

returnVar - Variable in which to place the return variable. The
value will be stored at returnVar[0]. Use null if the return variable
will be ignored by the script. If jseCallFunction() fails, no value
will be returned.

thisVar - The variable to be used as the >this= var; use null for the
global object.

COMMENTS This function is used to make a call to a ScriptEase function from
within your application.

RETURN Returns true if the call was successful, false otherwise. The context
error flag will have been cleared when this function returns,
therefore you should use this return value to determine if the
function failed.

Note: the returned variable must not be destroyed with
jseDestroyVariable().

SEE ALSO jseCurrentFunctionName, jseGetFunction, jseCreateStack,
jseDestroyStack, jsePush

Application Programming Interface 41

jseCompare
DESCRIPTION Compare two script variables for greater-than, less-than or equal

comparison.

SYNTAX boolean
JseContext.jseCompare(JseVariable variable1,

JseVariable variable2,
int[] compareResult);

PARAMETERS variable1 - The first variable to compare.

variable2 - The second variable to compare.

compareResult - Integer holder to store the result of this function.
On return, the first element of this array (i.e. compareResult [0])
will be set to:

< 0 if variable 1 is less than variable 2
 0 if variable 1 is equal to variable 2
> 0 if variable 1 is greater than variable 2.

COMMENTS This routine compares two JseVariables. In its most basic form, it
simply compares if two variables are equal, in that the data they
contain are equivalent, or that they point to the same object. In
addition, one of the following predefined values can be passed as
compareResult to use the standard ECMAScript comparison
routines:

JSE_COMPEQUAL - Compare using ECMAScript equality rules.

JSE_COMPLESS - Compare using ECMAScript less-than rules
(different from equality rules).

Typically, to do ECMAScript comparisons, the user should never
call this function directly. Use the functions jseCompareLess() and
jseCompareEquality(), which map to the equivalent flags above.

RETURN In a standard comparison, true if this call succeeds, false if it fails
(comparing incomparable types). When using JSE_COMPEQUAL,
returns a boolean value as to whether the two variables are equal.
When using JSE_COMPLESS, returns a boolean value as to
whether the first variable is less than the second variable.

SEE ALSO jseEvaluateBoolean, jseAssign, jseCompareLess,
jseCompareEquality

42 ScriptEase:ISDK/Java 4.10

jseCompareEquality
DESCRIPTION Compare two script variables for equality using ECMAScript rules.

SYNTAX boolean
JseContext.jseCompareEquality(

JseVariable variable1,
JseVariable variable2);

PARAMETERS variable1 - The first variable to compare.

variable2 - The second variable to compare.

COMMENTS This function is equivalent to calling jseCompare with the result
value JSE_COMPEQUAL.

If one variable is a string and the other a number, the string will be
converted to a number before comparing. Boolean values will be
converted to numbers before being compared.

RETURN True if the variables are equal to each other, false if they are not.

SEE ALSO jseEvaluateBoolean, jseAssign, jseCompare, jseCompareLess

jseCompareLess
DESCRIPTION See if one variable's value is less than another's, using ECMAScript

rules.

SYNTAX boolean
JseContext.jseCompareLess(JseVariable variable1,

 JseVariable variable2);

PARAMETERS variable1 - The first variable to compare.

variable2 - The second variable to compare.

COMMENTS This function converts variables to primitive values before they are
compared. If the two variables are both strings, they will be
compared as strings; otherwise they will be converted to numbers
and compared.

RETURN True if variable1 is less than variable2, false if variable1 is greater
than or equal to variable2.

SEE ALSO jseEvaluateBoolean, jseAssign, jseCompareEquality, jseCompare

Application Programming Interface 43

jseConvert
DESCRIPTION Convert a variable to a new jseDataType.

SYNTAX void
JseContext.jseConvert(JseVariable variable,

 int dType);
PARAMETERS variable - The ScriptEase variable to convert.

dType - The data type the variable is being converted to.

COMMENTS This function changes a variable from one type to another. This
function does not preserve the current contents of the variable, but
instead is much like destroying the previous variable and creating a
new variable with this type. If the variable is already of the
specified type, no conversion is performed and no data is lost.

RETURN None.

SEE ALSO jseDataType, jseGetType, jseAssign

jseCopyBuffer
DESCRIPTION Copy a section of a buffer from a JseVariable to a local buffer.

SYNTAX int JseContext.jseCopyBuffer(JseVariable variable,
 byte[] buffer,
 int start,
 int length);

PARAMETERS variable - The buffer variable which contains the data to be copied.

buffer - The local buffer that will be filled with the copied data.

start - The offset within the variable where the copying will start
from.

length - The length of data to be copied from the buffer variable.

RETURN None.

SEE ALSO jseCopyString, jseGetBuffer

44 ScriptEase:ISDK/Java 4.10

jseCopyString
DESCRIPTION Copy string data from a jseVariable to a user allocated buffer.

SYNTAX int JseContext.jseCopyString(JseVariable variable,
 byte[] string,
 int start,
 int length);

PARAMETERS variable - The variable containing the string to be copied.

buffer - The buffer which will be filled with the string data

start - The offset in the variable of the first character to be copied.

length - The length of the string to be copied from the variable.

RETURN None.

SEE ALSO jseCopyBuffer, jseGetString

jseCreateCodeTokenBuffer
DESCRIPTION Compile a block of ScriptEase code into executable tokens

SYNTAX byte[] JseContext.jseCreateCodeTokenBuffer(
String source
Boolean sourceIsFileName);

PARAMETERS source - ScriptEase source code to tokenize.

sourceIsFileName - true if Source is a filename, else false if Source
is a block of code.

COMMENTS This call will compile the code in the source parameter into a binary
sequence of tokens which can later be executed with jseInterpret or
jseInterpInit by passing the returned buffer as the tokenized code
parameter

RETURN The return value is a byte array of compiled tokens.

SEE ALSO jseInterpret, jseInterpInit

Application Programming Interface 45

jseCreateConvertedVariable
DESCRIPTION Create a new variable from another variable and convert its data.

SYNTAX JseVariable
JseContext.jseCreateConvertedVariable(

JseVariable variableToConvert
int targetType);

PARAMETERS variableToConvert - variable to be used as a model for the new
variable.

targetType - type of variable to convert to.

jseToBoolean - Convert to a boolean value. The contents of
the variable depends on the original variable.
• jseTypeUndefined
• jseTypeNull
• jseTypeBoolean
• jseTypeBuffer
• jseTypeNumber
• jseTypeString
• jseTypeObject

jseToBuffer - Convert to a buffer type. This conversion is
done in the same manner as jseToString, but it is converted to
an ASCII sequence of bytes, rather than a Unicode string.

jseToBytes - Convert to a buffer type, but instead of converting
each unicode value to a corresponding ASCII value, a raw
transfer of data is done. That is, the Unicode string "Hi" would
be converted to the buffer '\0H\0i' or 'H\0i\0', depending on the
endianness of the system, and a floating point value would give
the actual bytes that share it rather than a test representation of
the value.

jseToInt32 - Convert to a 32-bit integer. This is done by
converting like jseToInteger does except the range of valid
values is 0 to 0xfffffff.

jseToInteger - Convert to an integral type. The value is first
converted with jseToNumber. If the result is NaN, then return
+0. If the result is +0, -0, +inf, or -inf, return 0. Otherwise,
return sign(result) * floor(abs(result)). In other words, the
value -4.8 would be converted to -4, shortened to fit. Only
values in the range -0x80000000 to 0x7fffffff can be stored.

jseToNumber: Convert to a jseTypeNumber variable based on
its type as follows:

46 ScriptEase:ISDK/Java 4.10

• jseTypeUndefine: NaN
• jseTypenull: +0
• jseTypeBoolean: The result is 1 if the argument is True.

The result is+0 if the argument is False.
• jseTypeBuffer: Same as jseTypeString
• jseTypeNumber: Same as original
• jseTypeString: The string is interpreted as a number, using

a complicated set of rules, which are intended to convert
human-readable number strings such as "45" and "-45.34"
to numbers. If there is an error converting the string to a
number, then the result is NaN. More information on these
rules can be found in the ECMAScript Language
Specifications in section 9.3.

• jseTypeObject - Convert input using jseToPrimitive, then
convert result with jseToNumber, and return the result.

jseToObject - Convert to an Object. If the original type is
jseType null or jseTypeUndefined, then a runtime error is
generated. No conversion is done if the original type is an
object. Otherwise, the value is converted to the corresponding
object wrapper type (i.e. for jseTypeString, new String() will be
called with the value as the parameter).

jseToPrimitive - No conversion is done if the variable is any
type but jseTypeObject. Otherwise, the internal defaultValue()
function of the object is called and that value returned.

jseToString - Convert to a string based on this table:

jseTypeUndefined - "undefined"jseTypeNull - "null"

jseTypeBoolean - If the argument is True, then the result is
"True", if the argument is false, then the result is "False".

jseTypeString - No conversion done

jseTypeObject - Convert with jseToPrimitive on the object
then convert the result with jseToString

jseToUint16 - Convert to an unsigned 16-bit integer. Convert
with jseToInteger, and then preserve the least significant 16
bits as an unsigned value.

jseToUint32 - Convert to an unsigned 32-bit integer. Convert
with jseToInt32, and then convert to be unsigned.

Application Programming Interface 47

COMMENTS This function will convert the variableToConvert into a variable of
the new targetType using the standard ECMAScript conversion
rules. See the description of jseConversionTarget for a description
of these rules. This differs from jseConvert in that it uses
ECMAScript conversion, rather than simply erasing the data and
creating a blank type.

RETURN If successful, a new JseVariable of the type specified by targetType
and containing the same value as variableToConvert (converted to
the specified type). Returns null if the interpreter is unable to
convert the variable to a requested type.

SEE ALSO jseConvert, jseCreateVariable, jseCreateSiblingVariable,
jseDestroyVariable, jseConversionTarget

jseCreateFunctionTextVariable
DESCRIPTION Return the source text of a function.

SYNTAX JseVariable
JseContext.jseCreateFunctionTextVariable(

JseVariable functionVariable);
PARAMETERS functionVariable - Variable to get the source from.

COMMENTS This function takes a variable and returns the source text of the
function. This is equivalent to calling toString() on the function.
You must destroy the variable using jseDestroyVariable when you
are done with it.

RETURN Returns a string containing the source text of functionVariable.

SEE ALSO jseCreateVariable, jseCreateSiblingVariable, jseDestroyVariable

48 ScriptEase:ISDK/Java 4.10

jseCreateLongVariable
DESCRIPTION Shortcut to create a ScriptEase variable of an integer value.

SYNTAX JseVariable
JseContext.jseCreateLongVariable(int value);

PARAMETERS value - Value to initialize this ScriptEase variable to.

COMMENTS This function creates a ScriptEase variable of type jseTypeNumber
and puts the specified value in the variable. This is equivalent to
creating a variable of type jseTypeNumber and then calling
jsePutLong() to put a value into it.

RETURN If successful, a pointer to the JseVariable created. If there is not
enough system memory to create the variable (extremely unlikely),
null will be returned.

This variable must be destroyed with jseDestroyVariable() when
you are done with it.

SEE ALSO jseCreateVariable, jseCreateSiblingVariable,
jseCreateConvertedVariable, jseDestroyVariable, jsePutLong

Application Programming Interface 49

jseCreateSiblingVariable
DESCRIPTION Create a ScriptEase Sibling Variable.

SYNTAX JseVariable
JseContext.jseCreateSiblingVariable(

JseVariable olderSiblingVar,
int elementOffsetFromOlderSibling);

PARAMETERS olderSiblingVar - The variable that you are basing the new sibling
variable on.

elementOffsetFromOlderSibling - The index into the array you are
creating this sibling variable from (if a string or buffer).

COMMENTS

This routine creates a sibling ScriptEase JseVariable. A sibling
variable is a variable that references an already existing ScriptEase
Variable. Changes to sibling variables affect each other. The offset
parameter is used in conjunction with buffer and string variables, as
it specifies an offset into the data at which to begin the sibling
variable. The original variable and the sibling variable still
reference the same variable, but calling jseGetString on the new
variable will start at the new offset into the original.

EXAMPLE JseVariable original =
jsecontext.jseCreateVariable (jseTypeString);
jsecontext jsePutString(original,@one two@);
jseVariable news =
jsecontext.jseCreateSiblingVariable
(original,4);
String data = jsecontext.jseGetString (news);
/* data now points to Atwo@, and any changes to
 * original or new will affect the other
 */

RETURN If successful, a pointer to the sibling jseVariable created. If there is
not enough system memory to create the variable (extremely
unlikely), null will be returned. This variable must be destroyed
with jseDestroyVariable() when you are done with it.

SEE ALSO jseCreateVariable, jseCreateConvertedVariable,
jseCreateLongVariable, jseDestroyVariable

50 ScriptEase:ISDK/Java 4.10

jseCreateStack
DESCRIPTION Create a jseStack.

SYNTAX JseStack
JseContext.jseCreateStack();

COMMENTS This function creates a JseStack which is used for pushing
parameters and calling functions from within the ISDK.

RETURN Returns a pointer to the new JseStack. null will be returned if there
is insufficient memory to create the stack. You must destroy the
stack using jseDestroyStack() when you are done with it.

SEE ALSO jseCallFunction, jseDestroyStack, jsePush

jseCreateVariable
DESCRIPTION Create a jseVariable of a given type.

SYNTAX JseVariable
JseContext.jseCreateVariable(int VType);

PARAMETERS VType - The type of ScriptEase variable to create.

RETURN If successful, a pointer to the JseVariable is created. If there is not
enough system memory to create the variable (extremely unlikely),
null will be returned. You must destroy this variable with
jseDestroyVariable() when you are done with it.

SEE ALSO jseCreateSiblingVariable, jseCreateConvertedVariable,
jseCreateLongVariable, jseDestroyVariable

Application Programming Interface 51

jseCreateWrapperFunction
DESCRIPTION Create a JseVariable object that is a callable function.

SYNTAX JseVariable
JseContext.jseCreateWrapperFunction(

JseFunctionDescrioption desc,
Object caller);

PARAMETERS desc - A function description created with Anew JseFunction
Description (...)@

Object - a JseLibrary of which these functions are a part.

RETURN If successful, this returns the JseVariable created. If there is not
enough system memory to create the variable (extremely unlikely),
null will be returned. This variable must be destroyed by calling
jseDestroyVariable() when you are done with it. The variable is a
function object which will call your wrapper function.

jseCurrentContext
DESCRIPTION Return the current JseContext based on any level of previous

context.

SYNTAX JseContext
JseContext.jseCurrentContext();

COMMENTS This function returns the most current JseContext. This may be
used in interrupt-type situations to located the JseContext of the
current depth of scripted function calls.

RETURN The current context for the current thread of execution.

SEE ALSO jsePreviousContext

jseCurrentFunctionName
DESCRIPTION Get the currently executing ScriptEase function.

SYNTAX String
JseContext.jseCurrentFunctionName();

COMMENTS Returns the name of the current function.

RETURN Name of the function currently executing. Returns null if a function
is not currently executing.

SEE ALSO jseGetFunction

52 ScriptEase:ISDK/Java 4.10

jseDeleteMember
DESCRIPTION Delete a property of an object.

SYNTAX void
JseContext.jseDeleteMember(JseVariable objectVar,

 String name);
PARAMETERS objectVar - ScriptEase variable pointer.

name - The name of the object property to delete.

COMMENTS This function deletes a property of an object. This function ignores
the jseDontDelete attribute (which is only used for the 'delete'
operator within scripts).

RETURN None.

SEE ALSO jseGetMember, jseGetNextMember

jseDestroyStack
DESCRIPTION Destroy a JseStack.

SYNTAX void
JsecContext.jseDestroyStack(JseStack stack);

PARAMETERS stack - The stack to destroy.

COMMENTS This function destroys the specified stack.

RETURN None.

SEE ALSO jseCallFunction, jseCreateStack, jsePush

Application Programming Interface 53

jseDestroyVariable
DESCRIPTION Destroy a ScriptEase variable.

SYNTAX void
JseContext.jseDestroyVariable(

JseVariable variable);
PARAMETERS variable - the ScriptEase variable to destroy.

COMMENTS Use this routine to free up the system resources allocated to a
ScriptEase variable when it is no longer needed. Variables created
with one of the jseCreateXXX() functions must be destroyed;
passing a variable to jseReturnVar() with the flag AjseReturnTemp@
is another way to release a variable you own.

This is probably the most easily misunderstood concept in the API.
“Destroying a variable” does not mean destroying the contents of
the variable. Instead, it means to destroy your handle or lock on the
variable.

If this is the last such lock, then the contents are destroyed. When
you get a JseVariable handle, sometimes it is a lock that you must
destroy, but sometimes you must not destroy it. The description of
the API function will specify which case it is, but the general rule is
that if the API function has the word 'create' in it, you are getting a
lock you must destroy.

The API jseReturnVar() in several modes accepts a lock that it will
destroy when it is done; by passing the variable to it, you are
transferring your lock. If you have a variable that you aren=t
supposed to destroy and pass it to this function, you will have a
problem. Either use jseRetKeepLVar to tell jseReturnVar() not to
destroy the variable or create a lock using
jseCreateSiblingVariable() which you can then pass to it.

RETURN None.

SEE ALSO jseCreateVariable, jseCreateSiblingVariable,
jseCreateConvertedVariable, jseCreateLongVariable,

jseReturnVar

54 ScriptEase:ISDK/Java 4.10

jseEvaluateBoolean
DESCRIPTION Determine if a ScriptEase Variable is true or false.

SYNTAX boolean
JseContext.jseEvaluateBoolean(

JseVariable variable);
PARAMETER variable - The ScriptEase variable to test.

COMMENTS Test to see if a ScriptEase variable evaluates to true or false. Pass a
variable of type jseTypeBoolean.

RETURN The boolean value of variable.

jseFindVariable
DESCRIPTION Search for a variable with a given name.

SYNTAX JseVariable
JseContext.jseFindVariable(

Stringname, int flags);
PARAMETERS name - The name of the variable sought.

flags - Either 0 or AjseCreateVar@ to create a variable you must
destroy.

COMMENTS This variable searches the current scope chain for a variable with the
given name. Usually, you want to search the scope chain as it was
for the function that called you, since someone will likely write
something like:
function myfunc()
{

var a;
wrapper(Aa@);

}
The >a= refers to the >a= from the point of view of the calling function,
not your wrapper function (which does not have the locals of the
calling function as part of its scope chain.) In most cases, thus, the
correct way to call this function is to use
JseContext.jsePreviousContext() as the context you pass to
this function.

RETURN Returns the variable if it is found, null if no such variable can be
found. Do not destroy the variable unless you use the flag
AJseCreateVar@.

SEE ALSO jseGetVariableName

Application Programming Interface 55

jseFuncVar
DESCRIPTION Get a ScriptEase function wrapper argument.

SYNTAX JseVariable
JseContext.jseFuncVar(int ParameterOffset);

PARAMETERS ParameterOffset - The offset of the argument you are trying to
access starting at 0. Variables are passed from left to right.

COMMENTS This function gets a parameter passed to a wrapper function. It
returns a JseVariable, but does no type checking.

RETURN Returns a JseVariable if a valid index is given. Otherwise returns
null. If index is invalid then the error handling routines will have
been called.

SEE ALSO jseFuncVarCount, jseGetFunction, jseFuncVarNeed

jseFuncVarCount
DESCRIPTION Get the number of parameters passed to a wrapper function.

SYNTAX int
JseContext.jseFuncVarCount();

COMMENTS This function determines how many arguments were passed to a
ScriptEase function.

RETURN The number of arguments passed to this wrapper function.

SEE ALSO jseFuncVar, jseGetFunction, jseFuncVarNeed

jseFuncVarNeed
DESCRIPTION Get a ScriptEase function wrapper argument and validate its type.

SYNTAX JseVariable
JseContext.jseFuncVarNeed(int parameterOffset,

 int jseVarNeeded);

56 ScriptEase:ISDK/Java 4.10

PARAMETERS parameterOffset - The offset of the argument you are trying to
access, starting at 0.
jseVarNeeded - The type of the argument you are trying to access.
It can be one or more of the following values:

(If you are supplying two possible types, they should be OR'ed
together.)

JSE_VN_UNDEFINED gets an undefined variable.
JSE_VN_NUMBER gets a number.
JSE_VN_NULL gets a null variable.
JSE_VN_STRING gets a string or byte array.
JSE_VN_BOOLEAN gets a boolean variable. JSE_VN_INT get a
number that can be represented as a long with no loss of precision.
JSE_VN_FUNCTION gets a function object.
JSE_VN_BYTE gets a number and cast it as a byte.
JSE_VN_BUFFER gets a buffer.
JSE_VN_OBJECT gets an object.
JSE_VN_ANY accepts any variable type.
Jselib.JSE_VN_NOT() accepts any variable not passed as a
parameter. For example:

Jselib.VN_NOT(JSE_VN_NUMBER | JSE_VN_STRING)
will accept any variable that is not a number or a string.

 Jselib.JSE_VN_CONVERT(from, to) This macro converts variables
of the type indicated by the first parameter to the type indicated by
the second parameter. For example:

Jselib.VN_CONVERT(JSE_VN_ANY, JSE_VN_STRING)
will convert any type of variable received to a string. You
cannot convert from JSE_VN_INT, JSE_VN_BYTE, or
JSE_VN_FUNCTION.

 Jselib.JSE_VN_COPYCONVERT This option indicates that if a
variable must be converted (with JSE_VN_CONVERT() or with the
jseOptLenientConversion option), a copy of the variable will be
made and converted, so that the original variable retains its type and
value. You may also use the macro JSE_FUNC_VAR_NEED(). If
the index or type are invalid this macro will not return and the
scripting session will be terminated.
JSE_VN_CREATE - create variable for explicit jseDestroyVariable.
JSE_VN_READ - variable is for reading only.
JSE_VN_WRITE - variable is for writing only.

COMMENTS This function is used to access function arguments to a ScriptEase
wrapper function. It returns a JseVariable, and does type checking
and possible conversion.

Application Programming Interface 57

RETURN Returns a JseVariable if a valid index is given and the type specified
is found. Otherwise returns null. If index is invalid or the type is
incorrect, an error message will have been called, and you should
return from the function.

SEE ALSO JseFuncVar, jseGetFunction, jseFuncVarCount

jseGetArrayLength
DESCRIPTION Get the span of elements in a ScriptEase variable object, string or

buffer.

SYNTAX int
JseContext.jseGetArrayLength(

JseVariable variable,
int[] MinIndex);

PARAMETERS variable - array variable for which to check the span.
MinIndex - When the function returns this will be set to the index
value of the first element in the ScriptEase array. This value will not
be greater than zero.
In evaluation objects, this function will only consider elements with
numeric indices. For example with this code the length of "foo" is 4:
var foo= new object();
foo[3] = "hello"
foo.blah = "goodbye

COMMENTS This routine determines the size (length) of a ScriptEase object,
string or buffer.

RETURN If variable is an object, returns the highest valid index of the object
+1; only properties with numeric names (i.e., array elements,) will
be considered. This function may be used to get the length of
dynamic arrays (i.e., arrays not created with the Array() constructor
function). If variable is a string or a buffer, it returns the length of
the string or buffer.

SEE ALSO jseCreateVariable, jseCreateSiblingVariable,
jseCreateLongVariable, jseDestroyVariable, jseSetArrayLength

58 ScriptEase:ISDK/Java 4.10

jseGetAttributes
DESCRIPTION Get a variable's attributes.

SYNTAX int
JseContext.jseGetAttributes(

JseVariable variable);
PARAMETERS variable - The ScriptEase variable to read.

COMMENTS This function is used to access the data associated with a
JseTypeByte variable.

RETURN The attributes assigned to variable.
SEE ALSO jseSetAttributes

jseGetBoolean
DESCRIPTION Get boolean from a JseVariable.

SYNTAX boolean
JseContext.jseGetBoolean(jseVariable variable);

PARAMETERS variable - The ScriptEase variable to read.

COMMENTS This function retrieves the data associated with a jseTypeBoolean
variable.

jseGetBuffer
DESCRIPTION Get buffer data from a JseVariable.

SYNTAX byte[]
JseContext.jseGetBuffer(JseVariable variable);

PARAMETERS variable - The jseVariable for the buffer being accessed.

COMMENTS Get buffer data from a JseVariable. Buffer data can have binary and
>/0' characters in=/0' the block and although it will always be >/0'
terminated. The final >/0' is not considered part of the data and is
not part of the length. The returned data can not be modified.

RETURN The buffer data.

SEE ALSO jseGetWritableBuffer, jseGetString

Application Programming Interface 59

jseGetByte
DESCRIPTION Get the-byte value of a numeric variable.

SYNTAX byte
JseContext.jseGetByte(JseVariable variable);

PARAMETERS variable - The ScriptEase variable to read.

COMMENTS This function gets the data associated with a jseTypeByte variable.

RETURN The value contained in the numeric variable as a byte.

SEE ALSO jsePutByte

jseGetCurrentThisVariable
DESCRIPTION Get the current Athis@ variable.

SYNTAX JseVariable
JseContext.jseGetCurrentThisVariable();

COMMENTS This function is used to get the current Athis@ variable.

RETURN Returns the current Athis@ variable.

SEE ALSO jseGlobalObject

jseGetExternalLinkParameters
DESCRIPTION Get to the external link parameters structure.

SYNTAX JseExternalLinkParameters
JseContext.jseGetExternalLinkParameters();

COMMENTS Use this function to get the external link parameter structure. Use
the structure to temporarily change the options. You must
remember to restore their original value.

RETURN JseExternalLinkParameters structure.

SEE ALSO jseInitializeExternalLink, jseTerminateExternalLink

60 ScriptEase:ISDK/Java 4.10

jseGetFileNameList
DESCRIPTION This function returns a list of all files opened by the script.

SYNTAX String[]
JseContext.jseGetFileNameList();

RETURN An array of strings representing containing the names of source files
needed to run the script, null will be returned if there are no such
files.

jseGetFunction
DESCRIPTION Get a ScriptEase function variable.

SYNTAX JseVariable
JseContext.jseGetFunction(JseVariable object,

String functionName,
boolean errorIfNotFound);

PARAMETERS object - The object the function will be associated with. Use null to
associate the function with the global object.

functionName - A string containing the name of the ScriptEase
function you are searching for.

errorIfNotFound - If this flag is set to true, an error message will
be displayed if the requested function can not be found.

COMMENTS This function gets a given ScriptEase Library function, or any other
function in the script being executed.

RETURN A JseVariable for the requested function. This function will cause a
temporary variable to be freed when the current context is ended,
such as when returning from a wrapper function. To avoid the
temporary variable (e.g. not calling from a wrapper or calling
frequently) use jseMemberEx(...jseCreateVariable) and test that the
variable is a function with jseIsFunction()

This function will return null if the requested function wasn't found.

SEE ALSO jseCallFunction, jseCurrentFunctionName

Application Programming Interface 61

jseGetIndexMember
DESCRIPTION

Get a JseVariable for a numerically indexed property.

SYNTAX

JseVariable
JseContext.jseGetIndexMember(

JseVariable objectVariable,
int index);

PARAMETERS objectVariable - The jseVariable from which to get a property.

index - The index of the desired property.

COMMENTS This routine gets a JseVariable for an object property. This function
is intended for use with the numbered properties of array objects. To
get a property that is named with a string, use jseGetMember().

RETURN JseVariable is returned or null if the index is invalid.

SEE ALSO jseGetNextMember, jseIndexMember, jseMember,
jseDeleteMember, jseGetIndexMemberEx

jseGetIndexMemberEx
DESCRIPTION Get a JseVariable of a numerically indexed object property.

SYNTAX JseVariable
JseContext.jseGetIndexMemberEx(

JseVariable objectVariable,
int index
int flags);

PARAMETERS objectVariable - The JseVariable of the object from which to get a
property.

index - The index of the desired property.

flags - see jseMemberEx in this chapter for flags.

COMMENTS This routine gets a JseVariable for an object property. This function
is intended for use with the numbered properties of objects. To get a
property that is named with a string, use jseGetMemberEx().

RETURN A JseVariable is returned or null if the index is invalid.

SEE ALSO

jseGetNextMember, jseIndexMember, jseMember,
jseIndexMemberEx, jseMemberEx, jseGetIndexMember,
jseGetMember, jseGetIndexMemberEx, jseGetMemberEx,
jseDeleteMember

jseGetJavaObject

62 ScriptEase:ISDK/Java 4.10

DESCRIPTION Get the Java 'Object' variable associated with a JseVariable.
SYNTAX Object JseContext.jseGetJavaObject(

JseVariable var);
COMMENTS It is often useful to be able to associate an arbitrary Java item with a

JseVariable and later retrieve it. This is anologous to storing a C
pointer by casting it to an int. This function retrieves an Object
previously stored via jseSetJavaObject().

Remember, any Java item object of any type can be cast to an
(Object) and stored via this function. Cast it back to its original type
when you retrieve it with this function. You can only store a Java
Object in a JseVariable that is itself of type jseTypeObject.

RETURN The Java Object stored with jseSetJavaObject.
SEE ALSO jseSetJavaObject.

jseGetToolkitApp
DESCRIPTION Returns the toolkit application object for this JseContext.
SYNTAX Object JseContext.jseGetToolKitApp()
RETURN Return the object passed to the jseIntializeExternalLink call which

created this context.
SEE ALSO

jseGetLong
DESCRIPTION

Get the long value of a numeric variable.

SYNTAX

int JseContext.jseGetLong(JseVariable variable);

PARAMETERS variable - The ScriptEase variable to read.

COMMENTS Use this function to access the data of a jseTypeNumber variable,
cast to an integer value.

RETURN The value contained in the numeric variable as an integer.

SEE ALSO jsePutLong

Application Programming Interface 63

jseGetMember
DESCRIPTION Get a JseVariable for the property of a ScriptEase object.

SYNTAX JseVariable JseContext.jseGetMember(
jseVariable objectVariable,
String Name);

PARAMETERS objectVariable - The jseVariable to the object from which to get a
property. Use null to indicate the global variable. The prototype will
be searched.

Name - The name of the object property.

COMMENTS This routine gets a JseVariable for an object property.

RETURN A JseVariable to the requested object property, or null if the object
does not exist.

SEE ALSO jseGetNextMember, jseMember, jseDeleteMember

jseGetMemberEx
DESCRIPTION Get a JseVariable for a ScriptEase object property.

SYNTAX JseVariable
JseContxt.jseGetMemberEx(

JseVariable objectVariable,
String[] name,
int flags);

PARAMETERS objectVariable - The JseVariable of the object from which to get a
property. Use null to indicate the global variable.

Name - The name of the object property.

flags - see jseMemberEx in this chapter.

COMMENTS This routine gets a JseVariable of an object property.

RETURN A JseVariable for the requested object property, or null on failure.

SEE ALSO jseMemberEx, jseGetNextMember, jseMember, jseMemberEx,
jseIndexMember, jseIndexMemberEx, jseGetIndexMember,
jseGetIndexMemberEx, jseDeleteMember

64 ScriptEase:ISDK/Java 4.10

jseGetNextMember
DESCRIPTION Get the next property of an object.

SYNTAX JseVariable JseContext.jseGetNextMember(
JseVariable objectVar,
JseVariable prevMemberVariable,
String[] name);

PARAMETERS objectVar - The JseVariable for the object from which to retrieve
properties. Use null to indicate the global variable.

prevMemberVariable - The previous object property. If this is set
to null, the first member will be returned.

name - On return, the name of the object property that was returned
at name[0].

COMMENTS This function allows you to get all the properties of a ScriptEase
object variable by stepping through them one at a time. It isn't
necessary to know the names of the properties. In the first call, null
is provided as the previous property; the first property of the object
will be returned. This function will return all properties, even those
which have the JseDontEnum attribute set. You should check each
variable=s properties if you want to ignore such numbers.

RETURN A JseVariable for the next object property. This value should be
used on subsequent calls to retrieve the next properties. When null is
returned, there are no more object properties.

SEE ALSO jseGetMember, jseMember, jseDeleteMember

jseGetString
DESCRIPTION Get string data from a ScriptEase variable.

SYNTAX String JseContext.jseGetString (JseVariable variable);

PARAMETERS variable - The ScriptEase variable to read.

COMMENTS Get string data from a variable. The returned data must not be
modified.

RETURN The data will be ‘\0’-terminated, but this terminating ‘\0’ character
is not considered part of the variable and not considered when
determining the variable length. Note also that ECMAScript strings
may contain embedded ‘\0’’s.

SEE ALSO jseGetBuffer, jseGetWritableString, jseGetWritableBuffer,
jseCopyString, jseCopyBuffer, jsePutString, jsePutBuffer

Application Programming Interface 65

jseGetType
DESCRIPTION Get the type of a JseVariable.

SYNTAX int JseContext.jseGetType(
JseVariable variable);

PARAMETERS variable - The JseVariable whose type is being checked.

COMMENTS This function is used to determine the specified JseVariable's type.

RETURN The type of the variable passed as the argument. Valid types are
jseTypeUndefined, jseTypenull, jseTypeNumber, jseTypeString,
jseTypeBuffer, jseTypeObject, and jseTypeBoolean.

SEE ALSO jseConvert, jseAssign

jseGetVariableName
DESCRIPTION Get the name of a script variable corresponding to the given

jseVariable.

SYNTAX String JseContext.jseGetVariableName(
jseVariable variableToFind);

PARAMETERS variable - The variable you want to get.

COMMENTS This function gets the name of the variable corresponding to
variableToFind. For example, if there is an error in executing the
script and you wish to inform the user that a variable is of the wrong
type, you can use this function to get the name of the variable as it is
referred to in the script.

RETURN true if successful, false if the variable was not found

SEE ALSO jseGetType, jseGetFunctionName

jseGetWriteableBuffer
DESCRIPTION Get buffer data from a JseVariable.

SYNTAX byte[] JseContext.
jseGetWriteableBuffer(JseVariable variable);

PARAMETERS variable - The jseVariable handle to the buffer being accessed.

COMMENTS Get buffer data from a variable. Buffer data can have binary and >\0'
characters in the block.

RETURN The buffer data.

SEE ALSO jseGetBuffer, jseGetString

66 ScriptEase:ISDK/Java 4.10

jseGetWriteableString
DESCRIPTION Get string data from a ScriptEase variable.

SYNTAX String JseContext.
jseGetWriteableString(JseVariable variable)

PARAMETERS variable - The jseVariable handle to the string variable being
accessed.

COMMENTS Get string data from a ScriptEase variable. Since Java strings are
immutable, this funciton is identical to jseGetString(). It is provided
for compatibility with the C API.

RETURN The string data contained in variable.

SEE ALSO jseGetString, jseGetNumber

jseGlobalObject
DESCRIPTION Get the current global object.

SYNTAX JseVariable
JseContext.jseGlobalObject();

COMMENTS This function is used to get the current global object.

RETURN Returns a pointer to the current global object.

SEE ALSO jseGetCurrentThisVariable

Application Programming Interface 67

jseIndexMember
DESCRIPTION Retrieve a numerically indexed variable from an object; create it if it

does not exist.

SYNTAX JseVariable.JseContext.jseIndexMember(
JseVariable objectVar,
int index,
int jseDataType);

PARAMETERS objectVar - The object to query.

index - The index of the variable to retrieve.

jseDataType - The type of the desired variable.

COMMENTS This function is intended to get the numbered properties of objects.
To get named properties, use jseMember().

RETURN The desired variable. If it does not exist it will be created.

SEE ALSO jseGetIndexMember, jseIndexMemberEx, jseGetIndexMemberEx

jseIndexMemberEx
DESCRIPTION Retrieve a variable from a numerically-indexed object; create it if it

does not exist.

SYNTAX JseVariable.JseContext
jseIndexMemberEx(jseVariable objectVar,

 int index,
 int type
 int flags);

PARAMETERS objectVar - The object to query.

index - The index of the variable to retrieve.

type - The type of the desired variable.

flags - see jseMemberEx in this chapter.

COMMENTS This function is intended to get the numbered properties of objects.
To get named properties, use jseMemberEx().

RETURN The desired variable. If it does not exist it will be created.

SEE ALSO

jseIndexMember, jseGetIndexMember, jseGetIndexMemberEx

68 ScriptEase:ISDK/Java 4.10

jseInitializeEngine
DESCRIPTION

This call initializes the ScriptEase Interpreter Engine.

SYNTAX

int
jseInitializeEngine();

COMMENTS Call this before any other call in the toolkit to initialize the
processor.

RETURN Returns the ID of the engine for version number verification.

SEE ALSO jseTerminateEngine

jseInitializeExternalLink
DESCRIPTION Routine to initialize a ScriptEase context.

SYNTAX JseContext JseLib;
jseInitializeExternalLink(object ToolkitGetObject

JseExternLinkParameters linkParms,
String globalVarName,
String accessKey);

PARAMETERS ToolkitGetObject - The object that is contructing the context
should be the one that implements any of the Jse instances.

linkParms - this structure (jseExternalLinkParameters) contains the
user defined properties of the ISDK. They are described in full
below.

globalVarName - this parameter, a string, is the name you wish to
give the global object.

accessKey - this is the key (supplied by Nombas) needed to activate
your copy of ScriptEase:Integration SDK. Java does not require a
key, but if you’re using the JNI version, the key must be valid.

The jseExternalLinkParameters structure has this prototype:
String jsesecurecode;
int options;

 jseSecureCode - Either a full file name and path or a block of
JavaScript code that performs the security checking. Set this
parameter to null if no security checking is needed.

Application Programming Interface 69

 Options - this is an or mask of the following flags. They define
how the interpreter treats variables.

jseDefault - Use this flag to use the system defaults.
jseOptRequireVarKeyword - Use this flag if you want to
force your users to use the 'var' keyword when creating
variables.
jseOptRequireFunctionKeyword - Use this flag if you want
to force your users to use the 'function' keyword when creating
functions.

jseOptDefaultLocalVars - Use this flag if you want variables
declared in a local environment to be local, regardless of
whether the var keyword is used or not. (In JavaScript,
variables declared without the var keyword would normally be
global). If there is a like-named global variable, instead of
creating a local variable the global variable would be used.
jseOptDefaultCBehavior - If this flag is defined, functions
will be treated as if they were created with the 'cfunction'
keyword, regardless of what keyword they were defined with.
jseOptWarnBadMath - If this flag is set, the interpreter will
notify you when you make illegal mathematical calculations
(such as dividing by zero). In JavaScript, dividing by zero
normally returns the value NaN and does not generate an error.
jseOptLenientConversion - this option causes variables to
automatically be converted to the required type if possible,
instead of generating an error. With this option set the macro
JSE_VN_CONVERT() will always behave as if the first
parameter passed were JSE_VN_ALL. The jsePutxxx()
functions will convert the variable to the required type. If you
are retrieving data from a variable, if the variable is not of the
correct type a copy of the variable will made, converted to the
correct type, and returned.

jseOptIgnoreExtraParameters - If this option is set, the
interpreter will ignore any parameters greater than the
maximum allowed for the function (specified in the Function
Descriptor table added to the context with jseAddLibrary().

RETURN returns a JseContext initialized with the values provided.

SEE ALSO jseGetExternalLinkParameters

jseInterpret

70 ScriptEase:ISDK/Java 4.10

DESCRIPTION Interpret a ScriptEase script

SYNTAX boolean JseContext.jseInterpret(
String sourceFile,
String sourceText,
byte[] pretokenizedBuffer,
int jseNewContextSettings,
int howToInterpret,
JseContext localVariableContext,
JseVariable[] returnVar);

PARAMETERS sourceFile - This argument is a string of the filename and path to a
JavaScript file or null if you are interpreting JavaScript source from
memory.

sourceText - This argument is either the text of the script to
interpret, or, if interpreting code from a file, the optional arguments
to pass to the script. If you do not need to use this parameter it
should be set to null.

pretokenizedBuffer - If you are interpreting code that has been
pretokenized with the jseCreateCodeTokenBuffer(), the code should
go here. Otherwise, set this parameter to null.

jseNewContextSettings - These flags specify which elements of the
jseContext about be created will be created new. Otherwise the
elements will be inherited from the current jseContext. Use one or
more of the following flags or'ed together:

jseNewNone - Do not create any new elements.

jseNewFunctions - Create new functions.

jseNewSecurity - Reinitialize security before interpreting the
script.

jseAllNew - Create new elements for all categories (functions
will be inherited from the parent JseContext).

howToInterpret - A flag to specify the method of interpretation.
Use one or more of the following, joined by a bitwise or (|):

JSE_INTERPRET_NO_INHERIT - This flag prevents global
variables from being passed to the new jseContext.

JSE_INTERPRET_CALL_MAIN - Call main() after running
initialization code.

localVariableContext - This parameter is a JseContext or null. If
you are calling jseInterpret from within a wrapper function, pass
jseContext.jsePreviousContext; otherwise pass null.

returnCode - If the function executes successfully (i.e., returns
true), on return this will contain the value returned by the JavaScript

Application Programming Interface 71

being executed. This variable must later be destroyed with
jseDestroyVariable(). If you don't need to use this value, pass in null.
The return value will be cleaned up automatically.

COMMENTS This call is the heart of the ScriptEase engine. After your ScriptEase
toolkit environment is set up, call this routine to interpret scripts.

RETURN true if the script was successfully executed, false if not.

jseInterpExec
DESCRIPTION Interpret a ScriptEase script

SYNTAX JseContext
JseContext.jseInterpretExec();

COMMENTS See jseInterpInit() for a description on using this function.

RETURN The context to pass to the next call to this function. null indicates
the script is done executing.

72 ScriptEase:ISDK/Java 4.10

jseInterpInit
DESCRIPTION Interpret a ScriptEase script

SYNTAX boolean JseContext.
jseInterpret(String sourceFile,

string sourceText,
byte() pretokenizedBuffer,
int jseNewContextSettings,
int howToInterpret,
JseContext localVariableContext,
JseVariable[] returnVar);

COMMENTS jseInterpInit(), jseInterpExec() and jseInterpTerm() provide an
alternative to jseInterpret() for interpreting scripts. The two systems
work in slightly different ways. jseInterpret() will call the
MayIContinueFunc defined in the JseContext before each script line
is executed.

With jseInterpInit() et al. you have more control over how the script
executes. jseInterpInit() initializes the script for interpretation. It
takes the same parameters as jseInterpret(). jseInterpInit() returns a
new JseContext for the script, which is then passed to
jseInterpExec(). The script is executed through repeated calls to
jseInterpExec() taking this JseContext as its only parameter and
returning an updated JseContext that must be passed again to
jseInterpExec to execute successive lines. If there are no more lines
to execute, jseInterpExec() returns null. The MayIContinueFunc
will not be called.

When jseInterpExec() returns null, the script has completed, and you
should call jseInterpTerm() to clean up the interpret. jseInterpTerm()
takes one parameter, the original JseContext passed to
jseInterpInit(), and not one of jseContexts returned from
jseInterpInit() or jseInterpExec(). See jseInterpret for a description
of parameters.

RETURN The context to use with jseInterpExec() the first time or null if some
error prevented the interpreting from being initialized..

Application Programming Interface 73

jseInterpTerm
DESCRIPTION

Terminate a ScriptEase script interpretation session.

SYNTAX
JseVariable JseContext.
jseInterpTerm();

COMMENTS See jseInterpInit() for a description of using this function.

RETURN The variable returned as the result of the script. You must destroy it
when you are done with it. null is returned if there was an error
interpretting the script.

SEE ALSO jseInterpInit, jseInterpExec.

jseIsFunction
DESCRIPTION Test whether a variable is a script or wrapper function registered

with the supplied JseContext.

SYNTAX boolean JseContext.jseIsFunction(
JseVariable functionVariable);

PARAMETERS functionVariable - The variable being tested.

COMMENTS This function tests whether functionVariable is a registered
function or not. If functionVariable was retrieved from a call to
jseGetFunction(), this test is not necessary.

RETURN true if functionVariable is a registered function; false if it is not.

SEE ALSO jseCreateWrapperFunction, jseIsLibraryFunction

74 ScriptEase:ISDK/Java 4.10

jseIsLibraryFunction
DESCRIPTION Test whether a variable is a wrapper function registered with the

supplied JseContext.

SYNTAX boolean JseContext.
jseIsLibraryFunction(JseVariable

 functionVariable);
PARAMETERS functionVariable - The variable being tested.

COMMENTS This function tests whether functionVariable is a function added
with jseAddLibrary or not.

RETURN Returns true if the function was added with jseAddLibrary();
otherwise returns false.

SEE ALSO jseCreateWrapperFunction, jseIsFunction

jseLibErrorPrintf
DESCRIPTION Prints a string describing the error encountered and flags the

interpreter to quit execution.

SYNTAX void JseContext.jseLibErrorPrintf(string text);

PARAMETERS text - the text of the error message.If an error condition has already
been flagged, then this function performs no action.

COMMENTS The function sets the error flag for the JseContext and prints the
string. The string lets you supply information about why the error
occurred.

RETURN None.

SEE ALSO jseLibSetErrorFlag, jseLibSetExitFlag

jseLibSetErrorFlag
DESCRIPTION Mark the context as having encountered an error.

SYNTAX void JseContext.jseLibSetErrorFlag();

COMMENTS Use this function sets the error flag to indicate that an error
condition exists. The script will be terminated and any necessary
cleanup performed when the current wrapper function is exited.

SEE ALSO jseLibErrorPrintf, jseLibSetExitFlag

Application Programming Interface 75

jseLibSetExitFlag
DESCRIPTION Set the ScriptEase Lib exit flag.

SYNTAX void JseContext.jseLibSetExitFlag(
jseVariable exitVariable);

PARAMETERS exitVariable - The value to be returned by the script. This is the
variable returned from jseInterpret.

COMMENTS Sets exit flag for this JseContext and saves exit variable. The script
will clean-up and exit on return from this wrapper function.

SEE ALSO jseLibErrorPrintf, jseLibSetErrorFlag

jseLocateSource
DESCRIPTION Get the file information for the currently running script.

SYNTAX String JseContext.jseLocateSource(
 int[] lineNumber);

PARAMETERS lineNumber -Holder for the current source file number.
COMMENTS Returns the name of the source file for the code currently being

executed, and sets lineNumber[0] to the line number currently being
executed or parsed. If there is no current file (as when interpreting a
string) null will be returned.

RETURN A string containing the name of the source file for the currently
executing code.

SEE ALSO jseBreakpointTest

76 ScriptEase:ISDK/Java 4.10

jseMember
DESCRIPTION Get or create a JseVariable for a ScriptEase object property.

SYNTAX JseVariable JseContext.jseMember(
JseVariable objectVar,
String name,
int jseDataType)

PARAMETERS objectVar - The object to get a property from.

name - The name of the object property.

jseDataType - This argument specifies the type of object property
variable that will be created if the variable does not already exist.

Note: this function has been deprecated in version 4.03. Internally it
calls jseMemberEx() with the flags parameter set to jseDefault.

COMMENTS This routine gets a ScriptEase variable reference for an object's
property. Once the JseVariable reference is obtained, use the data
access functions to get the data. If the variable does not exist, it will
be created when it is read from or written to.

RETURN A JseVariable pointer to the requested object property, or null on
failure. If the property does not exist it will be created. Failure
means the interpreter ran out of memory.

SEE ALSO jseMemberEx, jseGetMember, jseGetMemberEx, jseIndexMember,
jseIndexMemberEx, jseGetNextMember, jseDeleteMember,
jseGetIndexMember, jseGetIndexMemberEx

Application Programming Interface 77

jseMemberEx
DESCRIPTION Get a ScriptEase variable reference to a ScriptEase structure

element.

SYNTAX JseVariable
JseContext.jseMemberEx(JseVariable objectVar,

 String Name,
 int Dtype
 int flags)

PARAMETERS objectVar - The object to get a property from.

name - The name of the object property.

DType - This argument specifies the type of object property
variable that will be created.
flags - this should be set to one (some or all?) of the following
(values OR'ed together):

jseCreateVar - If this flag is set, then the variable returned
must be explicitly destroyed with jseDestroyVariable(). If this
flag is not specified then the variable is tracked internally, and
any variable returned from these functions is added to a list of
variables to be destroyed when the current context is finished.
This can cause problems with long-running persistent contexts
because many temporary variables can be added without ever
being deleted.
jseDontCreateMember - This only applies to the member
functions. If the member does not exist and it is set, null is
returned instead of creating the member. Therefore,
 jseGetMember(jsecontext,var,name)
is the same as,
 jseMemberEx(jsecontext,var,name,type,
 jseDontCreateMember).
jseDontSearchPrototype - This flag applies only to member
functions. The default is to search for any prototype of the
object not found in itself. This flag needs to be set to prevent
prototype searching.
jseLockRead - This flag allows finer control over what the
returned variable looks like. By default, a reference is returned.
If this flag is set, the variable is retrieved once when the
function is called and should be only used for reading from that
point on. This flag and jseLockWrite are mutually exclusive.
jseLockWrite - Similar to jseLockRead, but the variable is
locked for writing instead of reading.

78 ScriptEase:ISDK/Java 4.10

COMMENTS This routine gets a ScriptEase variable reference for an object's
property. Once the JseVariable reference is attained, use the data
access functions to get the data. If the variable does not exist, it will
be created.

RETURN A JseVariable for the requested object property, or null on failure. If
the property does not exist it will be created. Failure means the
interpreter ran out of memory.

SEE ALSO jseGetMember, jseGetNextMember, jseDeleteMember

jseMemberWrapperFunction
DESCRIPTION Attach a new object method to a wrapper function.

SYNTAX JseVariable
JseContext.jseMemberWrapperFunction(

JseVariable objectVar
String functionName
String);

 or
JseLibraryFunction function,

int minVariableCount,
int maxVariableCount,
int varAttributes,
int funcAttributes,
Object libObj);

PARAMETERS objectVar - The object that the function is a method of. Use null to
make it a global function

functionName - is the name of your function in a script. It should
be a string such as "GetString". Your users will refer to the function
by this name.

function - is the name of the Java method (or an instance of an inner
class that implements JseLibraryFunction) corresponding to the
function above.

COMMENTS This routine creates a function variable as an object method. It must
eventually be destroyed with jseDestroyVariable().

RETURN If successful, this returns the JseVariable created. If there is not
enough system memory to create the variable (extremely unlikely),
null will be returned.

Application Programming Interface 79

jsePreDefineNumber
DESCRIPTION Define a string alias for a ScriptEase number value.

SYNTAX void
JseContext.jsePreDefineNumber(

String findString,
double replaceL);

PARAMETERS findString - String to match in source.

replaceL - Number to substitute for findString when parsing source.

You can use this function to override the #define statements in a
script.

COMMENTS Use this routine to define a float for use by interpreted scripts. When
parsing the ScriptEase source, any instance of findString (case
sensitive) that might otherwise refer to a variable is replaced with
the value for replaceL.

This use:
 jsecontext.jsePreDefineNumber("PI",3.1415927);
is similar to the script having this statement:
 #define PI 3.1415927

RETURN None.

SEE ALSO jsePreDefineLong, jsePreDefineString

80 ScriptEase:ISDK/Java 4.10

jsePreDefineLong
DESCRIPTION Define a string alias for a long-integer value.

SYNTAX void
JseContext.jsePreDefineLong(

String FindString, int ReplaceL);
PARAMETERS FindString - string to match in ScriptEase source.

ReplaceL - Integer to substitute for FindString when parsing
ScriptEase source.

You can use this function to override the #define statements in a
script.

COMMENTS Use this routine to define a long for use by interpreted scripts. When
parsing the ScriptEase source, any instance of FindString (case
sensitive) that might otherwise refer to a variable is replaced with
the integer value for ReplaceL.

This use:
 Jsecontext.jsePreDefineLong("MILLION",1000000);

is similar to the ScriptEase source having a statement such as:
 #define MILLION 1000000

RETURN None.
SEE ALSO jsePreDefineNumber, jsePreDefineString

Application Programming Interface 81

jsePreDefineString
DESCRIPTION Define a JavaScript string value.

SYNTAX void
JseContext.jsePreDefineString(

String findString,
String replaceString);

PARAMETERS FindString - string to match in source.

ReplaceString - String to substitute for findString when parsing
source. The replace string may be any sequence. You can use this
function in your application to override the #define statements in
any script it runs.

#define is used for text-replacement only, i.e. before the script is
interpreted, all instances of findString are replaced with
"replaceString," and the resulting text is interpreted as ScriptEase
code.

COMMENTS Use this routine to define a string for use by interpreted scripts.
When parsing the source, any instance of findString (case sensitive)
that might otherwise refer to a variable is replaced with
replaceString. This use:
 jseContext.jsePreDefineString("VERSION_STR",

"Version 1.2.4 Beta");
is similar to the source having a statement such as:
 #define VERSION_STR AVersion 1.2.4 Beta@

RETURN None.

SEE ALSO jsePreDefineNumber, jsePreDefineLong

82 ScriptEase:ISDK/Java 4.10

jsePush
DESCRIPTION Push a JseVariable onto a JseStack.

SYNTAX void
JseContext.JsePush(JseStack jsestack,

JseVariable var,
boolean destroyWhenFinished);

PARAMETERS stack - The stack to receive the variable.

var - The JseVariable to push onto the stack.

destroyWhenFinished - A boolean flag, specifying whether or not
the JseVariable on the stack should be destroyed when the stack is
destroyed. You only set this to true if you are responsible for
destroying a variable and wish to get rid of this responsibility. For
instance, if you used jseCreateVariable() to construct a variable to
pass as a parameter. By telling this routine to destroy it when done,
you no longer have to worry about destroying it yourself.

COMMENTS This function pushes a JseVariable onto the JseStack.

RETURN None.

SEE ALSO jseCreateStack, jseDestroyStack

jsePreviousContext
DESCRIPTION Retrieve the previous context.

SYNTAX JseContext
Jsecontext.jsePreviousContext();

COMMENTS Given the current context, jsePreviousContext will find the previous
one. The previous context will be the one that represents the script
function that called the current function.

RETURN The previous ScriptEase context, or null if there wasn't one.

Application Programming Interface 83

jsePutBoolean
DESCRIPTION Put boolean data into a JseVariable.

SYNTAX void
JseContext.jsePutBoolean(JseVariable variable,

boolean value);
PARAMETERS variable - The ScriptEase variable to write.

value - Value to set the variable to; use true or false

COMMENTS This function is used to write data to a jseTypeBoolean variable.

RETURN None.

SEE ALSO jseGetBoolean

jsePutBuffer
DESCRIPTION Put buffer data into a JseVariable.

SYNTAX void

JseContext.jsePutBuffer(JseVariable variable, byte[] data);

PARAMETERS variable - The ScriptEase variable to write data to.

data - Pointer to buffer data.

COMMENTS This function writes data to a jseTypeBuffer variable.

RETURN None.

SEE ALSO jseGetBuffer, jseGetWritableBuffer

jsePutByte
DESCRIPTION Write data to a variable as a byte.

SYNTAX void
JseContext.jsePutByte(JseVariable variable,

byte byteValue);
PARAMETERS variable - The ScriptEase variable to write.

byteValue - Value to which the variable is to be set.

COMMENTS This function is used to write data to a variable of jseTypeNumber.

RETURN None.

SEE ALSO jseGetNumber, jsePutNumber, jsePutLong

84 ScriptEase:ISDK/Java 4.10

jsePutNumber
DESCRIPTION Write numeric data to a JseVariable.

SYNTAX void
JseContext.jsePutNumber(JseVariable variable,

 double number);
PARAMETERS variable - The ScriptEase variable to write to.

number - Value to which the variable is to be set.
COMMENTS This function is used to write data to a jseTypeNumber variable.

RETURN None.

SEE ALSO jseGetNumber, jsePutLong, jsePutByte

jsePutLong
DESCRIPTION Write integer data to a JseVariable.

SYNTAX void
JseContext.jsePutLong(jseVariable variable,

int longvalue);
PARAMETERS variable - The ScriptEase variable to write.

longvalue - Value to which the variable is set.
COMMENTS This function is used to write data to a jseTypeNumber variable.

RETURN None.

SEE ALSO jseGetLong

Application Programming Interface 85

jsePutString
DESCRIPTION Write string to a JseVariable.

SYNTAX void
JseContext.jsePutString(JseVariable variable,

String data);
PARAMETERS variable - The ScriptEase variable to write.

data - Value to set the variable to.
COMMENTS This function writes string data to a jseTypeString variable. The

length of the string will be assumed to be the extra string=s length. If
you wish to explicitly pass a string length, use jsePutStringLength().

RETURN None.

SEE ALSO jsePutStringLength, jseGetString, jseGetWritableString

jsePutStringLength
DESCRIPTION Write string to a ScriptEase variable.

SYNTAX void
JseContext.jsePutStringLength(

JseVariable variable,
String data,
size);

PARAMETERS variable - The ScriptEase variable to write.

data - Value to set the variable to.

size - The length of the string in data.
COMMENTS This function writes string data to a jseTypeString variable.

RETURN None.

SEE ALSO jsePutString, jseGetString, jseGetWritableString

86 ScriptEase:ISDK/Java 4.10

jseQuitFlagged
DESCRIPTION Check if current context has been flagged to terminate execution.

SYNTAX int
JseContext.jseQuitFlagged();

COMMENTS Returns 0 if a call has not been made on this context to Exit
(jseLibSetExitFlag()), or to report an error via any of the error
reporting functions (jseLibSetErrorFlag() or jseLibErrorPrintf()). It
is not necessary to call these functions after the jseXXX library
functions, which include error status (if applicable) in their return
codes.

This function can be valuable during debugging (e.g., in assert()
statements) to ensure that the JseContext is valid. If you add
functions that may set the error or exit flags and that don't indicate
this information in their return codes, or if you are not checking
return codes in some sections, then jseQuitFlagged() may be used.

Another use for this function is the case where your context may be
handled in a callback, so you can save the context in a global and
check later if there was a problem.

If your script should exit due to an exit flag or due to an error, then
this function will return one of the following non-0 (non-false)
values:
 JSE_CONTEXT_ERROR // ERROR flag set
 JSE_CONTEXT_EXIT // EXIT flag set

RETURN (0) if this context is not flagged for exit due a call to
jseLibSetExitFlag() or to an error call, else return reason for exit,
indicated by one of the values described above.

SEE ALSO jseLibSetErrorFlag, jseLibSetExitFlag, jseLibErrorPrintf

Application Programming Interface 87

jseReturnNumber
DESCRIPTION Return a number from a ScriptEase wrapper function.

SYNTAX void
JseContext.jseReturnNumber(

double number);
PARAMETERS number - The numeric value to return.

COMMENTS This function is used to return a numeric value from a ScriptEase
wrapper function. If you call any of the jseReturnXXX() functions
again, the last call takes precedence. It creates a variable of type
jseTypeNumber, assigns the number to it, and makes that the return
from the wrapper function. It is not like >exit()= in that your wrapper
function continues executing. Typically, a call to this function is the
last thing your wrapper function does before returning.

RETURN None.

SEE ALSO jseReturnLong, jseReturnVar

jseReturnLong
DESCRIPTION Return an integer from a ScriptEase wrapper function.

SYNTAX void
JseContext.jseReturnLong(

int longValue);
PARAMETERS longValue - The value to return.
COMMENTS This function is used to return a long value from a ScriptEase

wrapper function. If you call any of the jseReturnXXX() functions
again, the last call takes precedence. It creates a variable of type
jseTypeNumber, assigns the longValue to it, and makes that the
return from the wrapper function. It is not like >exit()= in that your
wrapper function continues executing. Typically, a call to this
function is the last thing your wrapper function does before
returning.

RETURN None.

SEE ALSO jseGetLong

88 ScriptEase:ISDK/Java 4.10

jseReturnVar
DESCRIPTION Returns a jseVariable from a wrapper function.

SYNTAX Void
JseContext.jseReturnVar(JseVariable variable,

int jseReturnAction);
PARAMETERS variable - The variable to be returned from this function.

retAction - Specifies how the variable to be returned shall be
treated once you are done using it. The return action can be one of
the following values:

 jseRetTempVar - This is variable you own and are expected to
delete. By passing it along using this flag, you no longer have to
delete it. You have passed ownership to the system and it will delete
it when it is finished with it.

jseRetCopyToTempVar - Create a new variable, copy to that
variable (with jseAssign()), and then return that new variable to be
destroyed when it is popped. Don't return this variable; return the
copy. If you own this variable and are expected to delete it, you still
must do so.

jseRetKeepLVar - This is similar to jseRetCopyToTempVar in that
you still own the variable and must delete if appropriate. It differs in
that no copy is made. If you change the variable (such as with
jseConvert()), the change will be reflected in the value returned
from the function.

COMMENTS This function is used to generate a return value from a ScriptEase
wrapper function. It will return the specified ScriptEase variable. If
you call any of the jseReturnXXX() functions more than once, the
last call takes precedence.

RETURN None.

SEE ALSO jseReturnNumber, jseReturnLong

Application Programming Interface 89

jseSetAttributes
DESCRIPTION Set the attributes of a JseVariable.

SYNTAX void
JseContext.jseSetAttributes(

JseVariable variable,
int jseAttributes);

PARAMETERS variable - The variable to have its attributes updated.

attr - The attributes to be applied to variable.

 The return action can be any of the following values OR=ed
together:

jseDefaultAttr - Standard ECMAScript behavior.

jseDontEnum - Ignore thise member during for...in enumerations

jseDontDelete - Cannot be deleted by the delete operator

jseReadOnly - Makes the variable read only.

jseImplicitThis - Puts the 'this' variable in the scoping chain. This
only applies to calling this member if it is in fact a function.

RETURN jseGetAttribute

90 ScriptEase:ISDK/Java 4.10

jseSetArrayLength
DESCRIPTION Set the length of a string, buffer or numerically-indexed object.

SYNTAX void
JseContext.jseSetArrayLength(

JseVariable variable,
int MinIndex,
int length);

PARAMETERS variable - the ScriptEase variable for which the length will be set.

MinIndex - the index value to use for the first element of the array.
Must be less than or equal to zero.

length - length of the string or buffer, or one greater than the
maximum numerically indexed property or an object. Must be
greater than or equal to zero.

COMMENTS This routine sets the length of a ScriptEase string, buffer, or
numerically-indexed object. This function will create new array
entries if they are needed, and destroy those that are no longer
needed, i.e., that are outside of the bounds of the new array.

RETURN None.

SEE ALSO jseGetArrayLength

jseSetJavaObject
DESCRIPTION Set the Java 'Object' variable associated with a jseVariable.
SYNTAX void

JseContext.jseGetJavaObject(JseVariable var,Object
javaObj);

COMMENTS This often useful to be able to associate an arbitrary Java item with a
JseVariable and later retrieve it. This is analogous to storing a C
pointer by casting it to an int. This function associates an Object
with a JseVariable. If an object was already associated, it is
replaced. Remember, any Java item object of any type can be cast to
an (Object) and stored via this function. You can only store a Java
Object in a JseVariable that itself of type jseTypeObject.

RETURN None.
SEE ALSO jseGetJavaObject.

Application Programming Interface 91

jseTellSecurity
DESCRIPTION Call the security routine defined for the jseContext.

SYNTAX boolean
JseContext.jseTellSecurity(JseVariable infoVar);

PARAMETERS infoVar - The variable to be passed to the security filter. Your
application and its security filter may use it however you choose.

COMMENTS This function will call the security manager's initialization routine
(i.e. the jseSecurityInit() function); it is the only way your
application can directly interact with the security filter. It is
provided so you can 'reinitialize' the security system, probably to
change the security level of the script.

Typically, you will use this when executing a particularly insecure
piece of code (such as a script received over the network) to
downgrade the security level, restoring it when the script completes.
The only parameter is any JseVariable.

RETURN returns true if there is a security filter, and false if there is not.

jseTerminateEngine
DESCRIPTION A call to terminate the ScriptEase Interpreter Engine.

SYNTAX void
jseLib.jseTerminateEngine();

COMMENTS Call this function after all JseContext links have been terminated.
This function cleans up all the resources allocated and initialized by
jseInitializeEngine().

RETURN None.

SEE ALSO jseInitializeEngine

92 ScriptEase:ISDK/Java 4.10

jseTerminateExternalLink
DESCRIPTION Terminate a link to a given jseContext.

SYNTAX void
JseContext.jseTerminateExternalLink();

COMMENTS This routine is used to terminate the given JseContext. After this
call, any references to the supplied context are invalid and will
cause an error to occur.

RETURN None.

SEE ALSO jseInitializeExternalLink, jseGetExternalLinkparameters

jseVarNeed
DESCRIPTION Check the type of a given ScriptEase argument variable.

SYNTAX boolean
JseContext.jseVarNeed(
JseVariable variable,
int jseVarNeeded);

PARAMETERS variable - The variable being checked for type.
need - The type of the argument you are trying to verify. It can be
one of the values specified in jseFuncVarNeed.

COMMENTS This function verifies that a function argument to a ScriptEase
wrapper function is of a given type.

RETURN True if the variable specified is of the type specified or can be
convented according to the flags described in jseFuncVarNeed. null
otherwise and a error message will have been called.

SEE ALSO jseGetVar, jseFuncVar, jseFuncVarNeed

ScriptEase JavaScript 93

ScriptEase JavaScript Language

ScriptEase is a scripting or programming language that allows a computer user or
programmer to write simple scripts with tremendous power. The guiding principles for
ScriptEase are simplicity and power which add up to easy elegance in scripting. Scripts
are much easier to write and use than the source code for compiled languages such as
C++.

ScriptEase uses JavaScript, one of the most popular scripting language in today's world,
as its core language. In fact, ScriptEase uses the ECMAScript standard for JavaScript.
ECMAScript is the core version of JavaScript which has been standardized by the
European Computer Manufacturers Association and is the only standardization of
JavaScript. ScriptEase closely follows and will follow this standardized JavaScript.

ScriptEase is not limited to JavaScript, as good as it may be. ScriptEase has enhanced the
power of JavaScript by adding two objects, Clib and SElib, that have the power of the C
programming language. Indeed, ScriptEase implements a scripting version of C which
has the power of C in a simple scripting language. With the power of C readily available,
computer users or programmers are able to accomplish any tasks that they pursue. Both
JavaScript and C script can be intermingled in ScriptEase code, which allows scripters
flexibility, power, and simplicity.

The following line is a complete script which could be saved as a script file and run as a
program. The program simply displays a message, "A simple one line script," on a
computer screen.

Screen.writeln("A simple one line script")
The following code fragment1 uses a more structured approach to accomplish the same
task. JavaScript and C share similar programming styles, such as the main() function
shown in this fragment.

function main()
{

Clib.puts("A simple one line script");
}

A ScriptEase script may be written using a very straightforward scripting approach as
shown in the first example above, which is similar to the simple scripting of a DOS batch
file. A second line could be added to the single line as shown in the following fragment.
Screen.writeln("A simple one line script")
Clib.puts("Now there are two lines")

1 "Code fragment" and "fragment" are used interchangeably. They both refer to lines

of script or code that perform some scripting or programming task. The lines of code
may or may not be complete scripts or programs.

94 ScriptEase:ISDK/C

The example using the main() function could be expanded as follows.
function main()
{

Clib.puts("A simple one line script");
Screen.writeln("Now there are two lines");

}
These examples illustrate how easily ScriptEase can be used in a simple scripting mode
and how easily the power of functions can be put in a script, and not just the power of
functions, but the power of C. They show how easily JavaScript and C script can be
intermingled, since C is implemented as a JavaScript object. Functions and other
programming concepts are explained in the following descriptions of the ScriptEase
language. A tutorial section provides illustrations of scripts in addition to the example
code fragments in the text.

Most JavaScript, other than ScriptEase, is part of web browsers and is used while users
are connected to the Internet. Usually people are unaware that JavaScript is commonly
being executed on their computers when they are connected to various Internet sites. Not
only are they unaware, they are unable to write and execute scripts on their computers for
their own uses. ScriptEase steps in at this point. Users do not have to be connected to the
Internet to use ScriptEase, as they must be with other JavaScript interpreters.

Whether the desire is to write a simple script to copy a document to a backup folder or to
write an entire data processing program, ScriptEase can do the job or any other job
desired. ScriptEase has joined JavaScript and C. Further, ScriptEase adds commands and
functions not available in standard implementations of either. In short, ScriptEase is the
most powerful and advanced scripting language available today, and it achieves its power
while still being simple to use.

The following sections of this manual will help you to start enjoying the power of
ScriptEase.

Basics
Case sensitivity

ScriptEase is case sensitive. A variable named "testvar" is a different variable than one
named "TestVar", and both of them can exist in a script at the same time. Thus, the
following code fragment defines two separate variables:
var testvar = 5
var TestVar = "five"
All identifiers in ScriptEase are case sensitive. For example, to display the word "dog" on
the screen, the Screen.write() method could be used: Screen.write("dog"). But, if the
capitalization is changed to something like, Screen.Write("dog"), then the ScriptEase
interpreter generates an error message. Control statements and preprocessor directives are
also case sensitive. For example, the statement "while" is valid, but the word "While" is
not. The directive "#if" works, but the letters "#IF" fail.

ScriptEase JavaScript 95

Whitespace characters
Whitespace characters, space, tab, carriage-return and new-line, govern the spacing and
placement of text. Whitespace makes code more readable for humans, but is ignored by
the interpreter2.

Lines of script end with a carriage-return, and each line is usually a separate statement.
(Technically, in many editors, lines end with a carriage-return and linefeed pair, "\r\n".)
Since the interpreter usually sees one or more whitespace characters between identifiers
as simply whitespace, the following ScriptEase statements are equivalent to each other:
var x=a+b
var x = a + b
var x = a + b
var x = a
 + b
Whitespace separates identifiers into separate entities. For example, "ab" is one variable
name, and "a b" is two. Thus, the fragment, "var a b = 2" is valid, but "var ab = 2"
is not.

Many programmers use all spaces and no tabs, because tab size settings vary from editor
to editor and programmer to programmer. By using spaces only, the format of a script
will look the same on all editors. All scripts provided by Nombas with ScriptEase use
spaces only.

Comments
A comment is text in a script to be read by humans and not the interpreter which skips
over comments. Comments help people to understand the purpose and program flow of a
program. Good comments, which explain lines of code well, help people alter code that
they have written in the past or that was written by someone else.

There are two formats for comments: end of line comments and block comments. End of
line comments begin with two slash characters, "//". Any text after two consecutive slash
characters is ignored to the end of the current line. The interpreter begins interpreting text
as code on the next line. Block comments are enclosed within a beginning block
comment, "/*", and an end of block comment, "*/". Any text between these markers is a
comment, even if the comment extends over multiple lines. Block comments may not be
nested within block comments, but end of line comments can exist within block
comments.

2 The phrase, "the interpreter," is used synonymously with, "the ScriptEase

interpreter." ScriptEase, like JavaScript and many other popular languages, is an
interpreted language.

96 ScriptEase:ISDK/C

The following code fragments are examples of valid comments:
// this is an end of line comment

/* this is a block comment
 This is one big comment block.
 // this comment is okay inside the block
 Isn't it pretty?
*/

var FavoriteAnimal = "dog"; // except for poodles

//This line is a comment but
var TestStr = "this line is not a comment";

Expressions, statements, and blocks
An expression or statement is any sequence of code that performs a computation or an
action, such as the code "var TestSum = 4 + 3" which computes a sum and assigns it
to a variable. ScriptEase code is executed one statement at a time in the order in which it
is read. Many programmers put semicolons at the end of statements, although they are not
required. Each statement is usually written on a separate line, with or without semicolons,
to make scripts easier to read and edit.

A statement block is a group of statements enclosed in curly braces, "{}", which indicate
that the enclosed individual statements are a group and are to be treated as one statement.
A block can be used anywhere that a single statement can.

A while statement causes the statement after it to be executed in a loop. By enclosing
multiple statements in curly braces, they are treated as one statement and are executed in
the while loop. The following fragment illustrates:
while(ThereAreUncalledNamesOnTheList() == True)
{

var name = GetNameFromTheList();
CallthePerson(name);
LeaveTheMessage();

}

All three lines after the while statement are treated as a unit. If the braces were omitted,
the while loop would only apply to the first line. With the braces, the script goes through
all lines until everyone on the list has been called. Without the braces, the script goes
through all names on the list, but only the last one is called. Two very different
procedures.

Statements within blocks are often indented for easier reading.

ScriptEase JavaScript 97

Identifiers
Identifiers are merely names for variables and functions. Programmers must know the
names of built in variables and functions to use them in scripts and must know some rules
about identifiers to define their own variables and functions. The following rules are
simple and intuitive.
Identifiers may use only ASCII letters, upper or lower case, digits, the underscore, "_",

and the dollar sign, "$". That is, they may use only characters from the following sets
of characters.

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"_$"

Identifiers may not use letters of the following characters.
"+-<>&|=!*/%^~?:{};()[].'"'#,"

Identifiers must begin with a letter, underscore, or dollar sign, but may have digits
anywhere else.

Identifiers may not have whitespace in them since whitespace separates identifiers for the
interpreter.

Identifiers may be as long a programmer needs.
The following identifiers, variables and functions, are valid:
Sid
Nancy7436
annualReport
sid_and_nancy_prepared_the_annualReport
$alice
CalculateTotal()
$SubtractLess()
Divide$All()

The following identifiers, variables and functions, are not valid:
1sid
2nancy
this&that
Sid and Nancy
ratsAndCats?
=Total()
(Minus)()
Add Both Figures()

98 ScriptEase:ISDK/C

Prohibited identifiers
The following words have special meaning for the interpreter and cannot be used as
identifiers, neither as variable nor function names:

break case catch class const continue debugger

default delete do else enum export extends

False finally for function if import in

new NULL return super switch this throw

True try typeof while with var void

Variables
A variable is an identifier to which data may be assigned. Variables are used to store and
represent information in a script. Variables may change their values, but literals may not.
For example, if programmers want to display a name literally, they must use something
like the following fragment multiple times.
Screen.writeln("Rumpelstiltskin Henry Constantinople")
But they could use a variable to make their task easier, as in the following.
var Name = "Rumpelstiltskin Henry Constantinople"
Screen.write(Name)
Then they can use shorter lines of code for display and use the same lines of code
repeatedly by simply changing the contents of the variable Name.

Variable scope
Variables in ScriptEase may be either global or local. Global variables may be accessed
and modified from anywhere in a script. Local variables may only be accessed from the
functions in which they are created. There are no absolute rules for preferring or using
global or local variables. Each type has merit. In general, programmers prefer to use local
variables when reasonable since they facilitate modular code that is easier to alter and
develop over time. It is generally easier to understand how local variables are used in a
single function than how global variables are used throughout an entire program. Further,
local variables conserve system resources.

To make a local variable, declare it in a function using the var keyword:
var perfectNumber;
A value may be assigned to a variable when it is declared:
var perfectNumber = 28;
The default behavior of ScriptEase is that variables declared outside of any function or
inside a function without the var keyword are global variables. However, this behavior
can be changed by the DefaultLocalVariables and RequireVarKeyword settings of the
#option preprocessor directive. This directive is explained in the section on
preprocessing. For now, consider the following code fragment.

ScriptEase JavaScript 99

var a = 1;
function main()
{

b = 1;
var d = 3;
someFunction(d);

}

function someFunction(e)
{

var c = 2
...

}
In this example, a and b are both global variables, since a is declared outside of a
function and b is defined without the var keyword. The variables, d and c, are both local,
since they are defined within functions with the var keyword. The variable c may not be
used in the main() function, since it is undefined in the scope of that function. The
variable d may be used in the main() function and is explicitly passed as an argument to
someFunction() as the parameter e. The following lines show which variables are
available to the two functions:
main(): a, b, d
someFunction(): a, b, c, e
It is possible, though not usually a good idea, to have local and global variables with the
same name. In such a case, a global variable must be referenced as a property of the
global object, and the variable name used by itself refers to the local variable. In the
fragment above, the global variable a can be referenced anywhere in its script by using:
"global.a".

Functions
Functions are identified by names, as variables are. Functions perform script operations,
and variables store data. Functions do the work of a script and will be discussed in more
detail later. The reason they are mentioned here is simply to point out that they have
identifiers, names, that follow the same rules for identifiers as variable names do.

Function scope
Functions are all global in scope, much like global variables. A function may not be
declared within another function so that its scope is merely within a certain function or
section of a script. All functions may be called from anywhere in a script. If it is helpful,
think of functions as methods of the global object. The following two code fragments do
exactly the same thing. The first calls a function, SumTwo(), as a function, and the
second calls SumTwo() as a method of the global object.
// fragment one
function SumTwo(a, b)
{

100 ScriptEase:ISDK/C

return a + b
}

Screen.writeln(SumTwo(3, 4))

// fragment two
function SumTwo(a, b)
{

return a + b
}

Screen.writeln(global.SumTwo(3, 4))

Data types
Data types in ScriptEase can be classified into three groupings: primitive, composite, and
special. In a script, data can be represented by literals or variables. The following lines
illustrates variables and literals:
var TestVar = 14;
var aString = "test string";
The variable TestVar is assigned the literal 14, and the variable aString is assigned the
literal "test string". After these assignments of literal values to variables, the variables can
be used anywhere in a script where the literal values could to be used.

In the fragment above which defines and uses the function SumTwo(), the literals, 3 and
4, are passed as arguments to the function SumTwo() which has corresponding
parameters, a and b. The parameters, a and b, are variables for the function that hold the
literal values that were passed to it.

Data types need to be understood in terms of their literal representations in a script and of
their characteristics as variables.

Data , in literal or variable form, is assigned to a variable with an assignment operator
which is often merely an equal sign, "=" as the following lines illustrate.
var happyVariable = 7;
var joyfulVariable = "free chocolate";
var theWorldIsFlat = True;
var happyToo = happyVariable;
The first time a variable is used, its type is determined by the interpreter, and the type
remains until a later assignment changes the type automatically. The example above
creates three variables, each of a different type. The first is a number, the second is a
string, and the third is a boolean variable. Variable types are described below. Since
ScriptEase automatically converts variables from one type to another when needed,
programmers normally do not have to worry about type conversions as they do in
strongly typed languages, such as C.

ScriptEase JavaScript 101

Primitive data types
Variables that have primitive data types pass their data by value, by actually copying the
data to the new location. The following fragment illustrates:
var a = "abc";
var b = ReturnValue(a);

function ReturnValue(c)
{

return c;
}
After "abc" is assigned to variable a, two copies of the string "abc" exist, the original
literal and the copy in the variable a. While the function ReturnValue is active, the
parameter/variable c has a copy, and three copies of the string "abc" exist. If c were to be
changed in such a function, variable a, which was passed as an argument to the function,
would remain unchanged. After the function ReturnValue is finished, a copy of "abc" is
in the variable b, but the copy in the variable c in the function is gone because the
function is finished. During the execution of the fragment, as many as three copies of
"abc" exist at one time.

The primitive data types are: Number, Boolean, and String.

Number
Integer
Integers are whole numbers. Decimal integers, such as 1 or 10, are the most common
numbers encountered in daily life. ScriptEase has three notations for integers: decimal,
hexadecimal, and octal.
Decimal
Decimal notation is the way people write numbers in everyday life and uses base 10
digits from the set of 0-9. Examples are:
1, 10, 0, and 999
var a = 101;
Hexadecimal
Hexadecimal notation uses base 16 digits from the sets of 0-9, A-F, and a-f. These digits
are preceded by 0x. ScriptEase is not case sensitive when it comes to hexadecimal
numbers. Examples are:
0x1, 0x01, 0x100, 0x1F, 0x1f, 0xABCD
var a = 0x1b2E;
Octal
Octal notation uses base 8 digits from the set of 0-7. These digits are preceded by 0.
Examples are:
00, 05, and 077
var a = 0143;
Floating point
Floating point numbers are numbers with fractional parts which are often indicated by a
period, for example, 10.33. Floating point numbers are often referred to as floats.

102 ScriptEase:ISDK/C

Decimal
Decimal floats use the same digits as decimal integers but allow a period to indicate a
fractional part. Examples are:
0.32, 1.44, and 99.44
var a = 100.55 + .45;
Scientific
Scientific floats are often used in the scientific community for very large or small
numbers. They use the same digits as decimals plus exponential notation. Scientific
notation is sometimes referred to as exponential notation. Examples are:
4.087e2, 4.087E2, 4.087e+2, and 4.087E-2
var a = 5.321e33 + 9.333e-2;

Boolean
Booleans may have only one of two possible values: false or true. Since ScriptEase
automatically converts values when appropriate, Booleans can be used as they are in
languages such as C. Namely, false is zero, and true is non-zero. A script is more precise
when it uses the actual ScriptEase values, false and true, but it will work using the
concepts of zero and not zero. When a Boolean is used in a numeric context, it is
converted to 0, if it is false, and 1, if it is true.

String
A String is a series of characters linked together. A string is written using quotation
marks, for example: "I am a string", 'so am I', 'me too', and "344". The string "344" is
different from the number 344. The first is an array of characters, and the second is a
value that may be used in numerical calculations.

ScriptEase automatically converts strings to numbers and numbers to string, depending
on context. If a number is used in a string context, it is converted to a string. If a string is
used in a number context, it is converted to a numeric value. Automatic type conversion
is discussed more fully in a later section

Strings, though classified as a primitive, are actually a hybrid type that shares
characteristics of primitive and composite data types. Strings are discussed more fully a
later section.

Composite data types
Whereas primitive types are passed by value, composite types are passed by reference.
When a composite type is assigned to a variable or passed to a parameter, only a
reference that points to its data is passed.

ScriptEase JavaScript 103

The following fragment illustrates.
var AnObj = new Object;
AnObj.name = "Joe";
AnObj.old = ReturnName(AnObj)

function ReturnName(CurObj)
{

return CurObj.name
}
After the object AnObj is created, the string "Joe" is assigned, by value since a property is
a variable within an Object, to the property AnObj.name. Two copies of the string "Joe"
exist. When AnObj is passed to the function ReturnName, it is passed by reference.
CurObj does not receive a copy of the Object, but only a reference to the Object. With
this reference, CurObj can access every property and method of the original. If
CurObj.name were to be changed while the function was executing, then AnObj.name
would be changed at the same time. When AnObj.old receives the return from the
function, the return is assigned by value, and a copy of the string "Joe" transferred to the
property. Thus, AnObj holds two copies of the string "Joe": one in the property .name and
one in the property .old. Three total copies of "Joe" exist, counting the original string
literal.

Two commonly used composite data types are: Object and Array.

Object
An object is a compound data type, consisting of one or more pieces of data of any type
which are grouped together in an object. Data that are part of an object are called
properties of the object. The Object data type is similar to the structure data type in C and
in previous versions of ScriptEase. The object data type also allows functions, called
methods, to be used as object properties. Indeed, in ScriptEase, functions are considered
to be like variables. But for practical programming, think of objects as having methods,
which are functions, and properties, which are variables and constants.

Objects and their characteristics are discussed more fully in a later section.

Array
An array is a series of data stored in a variable that is accessed using index numbers that
indicate particular data. The following fragments illustrate the storage of the data in
separate variables or in one array variable:
var Test0 = "one";
var Test1 = "two";
var Test2 = "three";

var Test = new Array;
Test[0] = "one";
Test[1] = "two";
Test[2] = "three";
After either fragment is executed, the three strings are stored for later use. In the first
fragment, three separate variables have the three separate strings. These variables must be

104 ScriptEase:ISDK/C

used separately. In the second fragment, one variable holds all three strings. This Array
variable can be used as one unit, and the strings can be accessed individually. The
similarities, in grouping, between Arrays and Objects is more than slight. In fact, Arrays
and Objects are both objects in ScriptEase with different notations for accessing
properties. For practical programming, Arrays may be considered as a data type of their
own.

Arrays and their characteristics are discussed more fully in a later section.

Special values
undefined
If a variable is created or accessed with nothing assigned to it, it is of type undefined. An
undefined variable merely occupies space until a value is assigned to it. When a variable
is assigned a value, it is assigned a type according to the value assigned. Though
variables may be of type undefined, there is no literal representation for undefined.
Consider the following invalid fragment.
var test;
if (typeof test == "undefined")

Screen.writeln("test is undefined")
After var test is declared, it is undefined since no value has been assigned to it. But, the
test, "test == undefined", is invalid because there is no way to literally represent
undefined.

NULL
NULL is a special data type that indicates that a variable is empty, a condition that is
different from being undefined. A null variable holds no value, though it might have
previously. The null type is represented literally by the identifier, null. Since ScriptEase
automatically converts data types, null is both useful and versatile. The code fragment
above will work if "undefined" is changed to "null", as shown in the following:
var test = null;
if(test==null)
 Screen.writeln("It is null.");
Since null has a literal representation, assignments like the following are valid:
var test = null;
Any variable that has been assigned a value of null can be compared to the null literal.

NaN
The NaN type means "Not a Number". NaN is merely an acronym for the phrase.
However, NaN does not have a literal representation. To test for NaN, the function,
isNaN(), must be used, as illustrated in the following fragment:
var Test = "a string";
if (isNaN(parseInt(Test)))

Screen.writeln("Test is Not a Number");
When the parseInt() function tries to parse the string "a string" into an integer, it returns
NaN, since "a string" does not represent a number like the string "22" does.

ScriptEase JavaScript 105

Number constants
Several numeric constants can be accessed as properties of the Number object, though
they do not have a literal representation.

Constant Value Description

Number.MAX_VALUE 1.7976931348623157e+308 Largest number (positive)

Number.MIN_VALUE 2.2250738585072014e-308 Smallest positive non-zero
value

Number.NaN NaN Not a Number

Number.POSITIVE_IN
FINITY

Infinity Number above
MAX_VALUE

Number.NEGATIVE_I
NFINITY

Infinity Number below
MIN_VALUE

Automatic type conversion
When a variable is used in a context where it makes sense to convert it to a different type,
ScriptEase automatically converts the variable to the appropriate type. Such conversions
most commonly happen with numbers and strings. For example:
"dog" + "house" == "doghouse" // two strings are joined
"dog" + 4 == "dog4" // a number is converted
4 + "4" == "44" // to a string
4 + 4 == 8 // two numbers are added
23 - "17" == 6 // a string is converted to a number
Converting numbers to strings is fairly straightforward. However, when converting
strings to numbers there are several limitations. While subtracting a string from a number
or a number from a string converts the string to a number and subtracts the two, adding
the two converts the number to a string and concatenates them. String always convert to a
base 10 number and must not contain any characters other than digits. The string "110n"
will not convert to a number, because the ScriptEase interpreter does not know what to
make of the "n" character.

You can specify more stringent conversions by using the global methods, parseInt() and
parseFloat() methods. Further, ScriptEase has many global functions to cast data as a
specific type, functions that are not part of the ECMAScript standard. These functions are
described in the section on global functions that are specific to ScriptEase.

106 ScriptEase:ISDK/C

Properties and methods of basic data
types
The basic data types, such as Number and String, have properties and methods assigned
to them that may be used with any variable of that type. For example, all String variables
may use all String methods.

The properties and methods of the basic data types are retrieved in the same way as from
objects. For the most part, they are used internally by the interpreter, but you may use
them if choose. For example, if you have a numeric variable called number and you want
to convert it to a string, you can use the .toString() method as illustrated in the following
fragment.
var n = 5
var s = n.toString()
After this fragment executes, the variable n contains the number 5 and the variable s
contains the string "5".

The following two methods are common to all variables.

.toString()
This method returns the value of a variable expressed as a string.

.valueOf()
This method returns the value of a variable.

Operators
Mathematical operators

Mathematical operators are used to make calculations using mathematical data. The
following sections illustrate the mathematical operators in ScriptEase.

Basic arithmetic
The arithmetic operators in ScriptEase are pretty standard.
= assignment assigns a value to a variable
+ addition adds two numbers
- subtraction subtracts a number from another
* multiplication multiplies two numbers
/ division divides a number by another
% modulo returns a remainder after division
The following are examples using variables and arithmetic operators.
var i;
i = 2; i is now 2
i = i + 3; i is now 5, (2+3)
i = i - 3; i is now 2, (5-3)

ScriptEase JavaScript 107

i = i * 5; i is now 10, (2*5)
i = i / 3; i is now 3, (10/3) (the remainder is ignored)
i = 10; i is now 10
i = i % 3; i is now 1, (10%3)
Expressions may be grouped to affect the sequence of processing. All multiplication and
division is calculated for an expression before addition and subtraction unless parentheses
are used to override the normal order. Expressions inside parentheses are processed first,
before other calculations. In the following examples, the information inside square
brackets, "[]," are summaries of calculations provided with these examples and not part of
the calculations.

Notice that:
4 * 7 - 5 * 3; [28 - 15 = 13]
has the same meaning, due to the order of precedence, as:
(4 * 7) - (5 * 3); [28 - 15 = 13]
but has a different meaning than:
4 * (7 - 5) * 3; [4 * 2 * 3 = 24]
which is still different from:
4 * (7 - (5 * 3)); [4 * -8 = -32]
The use of parentheses is recommended in all cases where there may be confusion about
how the expression is to be evaluated, even when they are not necessary.

Assignment arithmetic
Each of the above operators can be combined with the assignment operator, =, as a
shortcut for performing operations. Such assignments use the value to the right of the
assignment operator to perform an operation with the value to the left. The result of the
operation is then assigned to the value on the left.
 = assignment assigns a value to a variable
+= assign addition adds a value to a variable
-= assign subtraction subtracts a value from a variable

*= assign multiplication multiplies a variable by a
value

/= assign division divides a variable by a value
%= assign remainder returns a remainder after

division
The following lines are examples using assignment arithmetic.
var i;
i = 2; i is now 2
i += 3; i is now 5, (2+3) same as i = i + 3
i -= 3; i is now 2, (5-3) same as i = i - 3
i *= 5; i is now 10, (2*5) same as i = i * 5
i /= 3; i is now 3.333, (10/3) same as i = i / 3
i = 10; i is now 10
i %= 3; i is now 1, (10%3) same as i = i % 3

Auto-increment (++) and auto-decrement (--)

108 ScriptEase:ISDK/C

To add or subtract one, 1, to or from a variable, use the auto-increment, ++, or
auto-decrement, --, operator. These operators add or subtract 1 from the value to which
they are applied. Thus, "i++" is a shortcut for "i += 1", which is a shortcut for
"i = i + 1".

These operators can be used before, as a prefix operator, or after, as a postfix operator,
their variables. If they are used before a variable, it is altered before it is used in a
statement, and if used after, the variable is altered after it is used in the statement. The
following lines demonstrates prefix and postfix operations.
i = 4; i is 4

j = ++i; j is 5, i is 5 (i was incremented before use)
j = i++; j is 5, i is 6 (i was incremented after use)
j = --i; j is 5, i is 5 (i was decremented before use)
j = i--; j is 5, i is 4 (i was decremented after use)
i++; i is 5 (i was incremented)

Bit operators
ScriptEase contains many operators for operating directly on the bits in a byte or an
integer. Bit operations require a knowledge of bits, bytes, integers, binary numbers, and
hexadecimal numbers. Not every programmer needs to or will choose to use bit
operators.

<< shift left i = i << 2;
<<= assignment shift left i <<= 2;
>> shift right i = i >> 2;
>>= assignment shift right i >>= 2;
>>> shift left with zeros i = i >>> 2
>>>= assignment shift left

with zeros
i >>>= 2

& bitwise and i = i & 1
&= assignment bitwise and i &= 1;
| bitwise or i = i | 1
|= assignment bitwise or i |= 1;
^ bitwise xor, exclusive

or
i = i ^ 1

^= assignment bitwise xor,
exclusive or

i ^= 1

~ Bitwise not, complement i = ~i;

Logical operators and conditional expressions
Logical operators compare two values and evaluate whether the resulting expression is
false or true. A variable or any other expression may be false or true. An expression that
does a comparison is called a conditional expression.

Logical operators are used to make decisions about which statements in a script will be
executed, based on how a conditional expression evaluates. As an example, suppose that
you are designing a simple guessing game. The computer thinks of a number between 1

ScriptEase JavaScript 109

and 100, and you guess what it is. The computer tells you if you are right or not and
whether your guess is higher or lower than the target number. This procedure uses the if
statement, which is introduced in the next section. Basically, if the conditional expression
in the parenthesis following an if statement is true, the statement block following the if
statement is executed. If false, the statement block is ignored, and the computer continues
executing the script at the next statement after the ignored block.

The script might have a structure similar to the one following, in which GetTheGuess() is
a function that gets your guess.
var guess = GetTheGuess(); //get the user input
if (guess > target_number)
{

guess is too high...
}

if (guess < target_number)
{

guess is too low...
}

if (guess == target_number)
{

you guessed the number!...
}

This example is simple, but it illustrates how logical operators can be used to make
decisions in ScriptEase.

110 ScriptEase:ISDK/C

The logical operators are:
! not reverses an expression. If (a+b) is true, then

!(a+b) is false.
&& and true if, and only if, both expressions are true.

Since both expressions must be true for the
statement as a whole to be true, if the first
expression is false, there is no need to evaluate
the second expression, since the whole
expression is false.

|| or true if either expression is true. Since only one
of the expressions in the or statement needs to
be true for the expression to evaluate as true, if
the first expression evaluates as true, the
interpreter returns true and does not bother
with evaluating the second.

== equality true if the values are equal, otherwise false. Do
not confuse the equality operator, ==, with the
assignment operator, =.

!= inequality true if the values are not equal, else false.
< less than a < b is true if a is less than b.
> greater

than
a > b is true if a is greater than b.

<= less than
or equal to

a <= b is true if a is less than or equal to b.

>= greater
than or
equal to

a >= b is true if a is greater than b.

Remember, the assignment operator, =, is different than the equality operator, ==. If you
use one equal sign when you intend two, your script will not function the way you want it
to. This is a common pitfall, even among experienced programmers. The two meanings
of equal signs must be kept separate, since there are times when you have to use them
both in the same statement, and there is no way the computer can differentiate them by
context.

typeof operator
The typeof operator provides a way to determine and to test the data type of a variable
and may use either of the following notations, with or without parentheses.
var result = typeof variable
var result = typeof(variable)

ScriptEase JavaScript 111

After either line, the variable result is set to a string that is represents the variable's type:
"undefined", "boolean", "string", "object", "number", "function" or "buffer".

Flow decisions statements
This section describes statements that control the flow of a program. Use these statements
to make decisions and to repeatedly execute statement blocks.

if
The if statement is the most commonly used mechanism for making decisions in a
program. It allows you to test a condition and act on it. If an if statement finds the
condition you test to be true, the statement or statement block following it are executed.
The following fragment is an example of an if statement.
if (goo < 10)
{

Screen.write("goo is smaller than 10\n");
}

else
The else statement is an extension of the if statement. It allows you to tell your program
to do something else if the condition in the if statement was found to be false. In
ScriptEase code, it looks like the following.
if (goo < 10)
{

Screen.write("goo is smaller than 10\n");
}
else
{

Screen.write("goo is not smaller than 10\n");
}
To make more complex decisions, else can be combined with if to match one out of a
number of possible conditions.

112 ScriptEase:ISDK/C

The following fragment illustrates using else with if.
if (goo < 10)
{

Screen.write("goo is less than 10\n");
if (goo < 0)
{

Screen.write("goo is negative; so it's less than 10\n");
}

}
else if (goo > 10)
{

Screen.write("goo is greater than 10\n");
}
else
{

Screen.write("goo is 10\n");
}

while
The while statement is used to execute a particular section of code, over and over again,
until an expression evaluates as false.
while (expression)
{

DoSomething();
}
When the interpreter comes across a while statement, it first tests to see whether the
expression is true or not. If the expression is true, the interpreter carries out the statement
or statement block following it. Then the interpreter tests the expression again. A while
loop repeats until the test expression evaluates to false, whereupon the program continues
after the code associated with the while statement.

The following fragment illustrates a while statement with a two lines of code in a
statement block.
while(ThereAreUncalledNamesOnTheList() != false)
{

var name=GetNameFromTheList();
SendEmail(name);

}

do {...} while
The do statement is different from the while statement in that the code block is executed
at least once, before the test condition is checked.
var value = 0;
do
{

value++;
ProcessData(value);

} while(value < 100);

ScriptEase JavaScript 113

The code used to demonstrate the while statement could also be written as the following
fragment.
do
{

var name = GetNameFromTheList();
SendEmail(name)

} while (name != TheLastNameOnTheList());
Of course, if there are no names on the list, the script will run into problems!

for
The for statement is a special looping statement. It allows for more precise control of the
number of times a section of code is executed. The for statement has the following form.
for (initialization; conditional; loop_expression)
{

statement
}
The initialization is performed first, and then the expression is evaluated. If the result is
true or if there is no conditional expression, the statement is executed. Then the
loop_expression is executed, and the expression is re-evaluated, beginning the loop again.
If the expression evaluates as false, then the statement is not executed, and the program
continues with the next line of code after the statement. For example, the following code
displays the numbers from 1 to 10.
for(var x=1; x<11; x++)
{

Screen.write(x);
}
None of the statements that appear in the parentheses following the for statement are
mandatory, so the above code demonstrating the while statement would be rewritten this
way if you preferred to use a for statement:
 for(; ThereAreUncalledNamesOnTheList() ;)
 {

 var name=GetNameFromTheList();
 SendEmail(name)

 }
Since we are not keeping track of the number of iterations in the loop, there is no need to
have an initialization or loop_expression statement. You can use an empty for statement
to create an endless loop:
for(;;)
{
//the code in this block will repeat forever,
//unless the program breaks out of the for loop somehow.
}

114 ScriptEase:ISDK/C

break
Break and continue are used to control the behavior of the looping statements: for, while,
and do. The break statement terminates the innermost loop of for, while, or do statements.
The program resumes execution on the next line following the loop. The following code
fragment does nothing but illustrate the break statement.
for(;;)
{
 break;
}
The break statement is also used at the close of a case statement, as shown below.

continue
The continue statement ends the current iteration of a loop and begins the next. Any
conditional expressions are reevaluated before the loop reiterates.

switch, case, and default
The switch statement makes a decision based on the value of a variable or statement. The
switch statement follows the following format:
switch(switch_variable)
{
case value1:
 statement1
 break;
case value2:
 statement2
 break;
 .
 .
 .
default:
 default_statement
}
The variable switch_variable is evaluated, and then it is compared to all of the values in
the case statements (value1, value2, . . . , default) until a match is found. The statement
or statements following the matched case are executed until the end of the switch block is
reached or until a break statement exits the switch block. If no match is found, the default
statement is executed, if there is one.

ScriptEase JavaScript 115

For example, suppose you had a series of account numbers, each beginning with a letter
that determines what type of account it is. You could use a switch statement to carry out
actions depending on that first letter. The same task could be accomplished with a series
of nested if statements, but they require much more typing and are harder to read.
switch (key[0])
{
case 'A':
 Screen.write("A"); //handle 'A' accounts...
 break;
case 'B':
 Screen.write("B"); //handle 'B' accounts...
 break;
case 'C':
 Screen.write("C"); //handle 'C' accounts...
 break;
 default:
 Screen.write("Invalid account number.\n");
 break;
}
A common mistake is to omit a break statement to end each case. In the preceding
example, if the break statement after the Screen.write("B") statement were omitted, the
computer would print both "B" and "C", since the interpreter executes commands until a
break statement is encountered.

goto and labels
You may jump to any location within a function block by using the goto statement. The
syntax is:
goto LABEL;
where LABEL is an identifier followed by a colon (:). The following code fragment
continuously prompts for a number until a number less than 2 is entered.
beginning:
Screen.write("Enter a number less than 2:")
var x = getche(); //get a value for x
if (a >= 2)
 goto beginning;
Screen.write(a);
As a rule, goto statements should be used sparingly, since they make it difficult to track
program flow.

116 ScriptEase:ISDK/C

Conditional operator ? :
The conditional operator provides a shorthand method for writing else statements. It is
harder to read than conventional if statements, and so is generally used when the
expressions in the if statements are brief. The syntax is:
test_expression ? expression_if_true : expression_if_false
First, test_expression is evaluated. If test_expression is true, then expression_if_true is
evaluated, and the value of the entire expression replaced by the value of
expression_if_true. If test_expression is false, then expression_if_false is evaluated, and
the value of the entire expression is that of expression_if_false.

The following fragment illustrates the use of the conditional operator.
foo = (5 < 6) ? 100 : 200; // foo is set to 100
Screen.write("Name is " + ((null==name) ? "unknown" : name));

ScriptEase JavaScript 117

Functions
A function is an independent section of code that receives information from a program
and performs some action with it. Once a function has been written, you do not have to
think again about how to perform the operations in it. Just call the function, and let it
handle the work for you. You only need to know what information the function needs to
receive, that is, the parameters, and whether it returns a value to the statement that called
it.

Screen.write() is an example of a function which provides an easy way to display
formatted text. It receives a string from the function that called it and displays the string
on the screen. Screen.write is a void function, meaning it has no return value.

In JavaScript, functions are considered a data type, evaluating to whatever the function's
return value is. You can use a function anywhere you can use a variable. Any valid
variable name may be used as a function name. Like comments, using descriptive
function names helps you keep track of what is going on with your script.

Two rules set functions apart from the other variable types: instead of being declared with
the "var" keyword, functions are declared with the "function" keyword, and functions
have the function operator, "()", following their names. Data to be passed to a function is
included within these parentheses.

Several sets of built-in functions are included as part of the ScriptEase interpreter. These
functions are described in this manual. They are internal to the interpreter and may be
used at any time. In addition, ScriptEase ships with a number of external libraries or .jsh
files. External libraries must be explicitly included in your script to use the functions in
them. See the description of the #include preprocessor directive.

ScriptEase allows you to have two functions with the same name. The interpreter uses the
function nearest the end of the script, that is, the last function to load is the one to be
executed when the function name is called. By taking advantage of this behavior, you can
write functions that supersede the ones included in the interpreter or .jsh files.

Function return statement
The return statement passes a value back to the function that called it. Any code in a
function following the execution of a return statement is not executed.
function DoubleAndDivideBy5(a)
{
 return (a*2)/5
}

118 ScriptEase:ISDK/C

Here is an example of a script using the above function.
function main()
{
 var a = DoubleAndDivideBy5(10);
 var b = DoubleAndDivideBy5(20);
 Screen.write(a + b);
}
This script displays12.

Passing variables to functions
JavaScript uses different methods to pass variables to functions, depending on the type of
variable being passed. Such distinctions ensure that information gets to functions in the
most complete and logical ways.

Primitive types, namely, Strings, numbers, and Booleans, are passed by value. The value
of theses variables are passed to a function. If a function changes one of these variables,
the changes will not be visible outside of the function where the change took place.

Composite types, Objects and Arrays, are passed by reference. Instead of passing the
value of the object, that is, the values of each property, a reference to the object is
passed. The reference indicates where in a computer's memory that values of an object's
properties are stored. If you make a change in a property of an object passed by reference,
that change will be reflected throughout in the calling routine.

Function properties -- arguments[]
The arguments[] property is an array of all of the arguments passed to a function. The
first variable passed to a function is referred to as arguments[0], the second as
arguments[1], and so forth.

The most useful aspect of this property is that it allows you to have functions with an
indefinite number of parameters. Here is an example of a function that takes a variable
number of arguments and returns the sum of them all.
function SumAll()
{

var total = 0;
for (var ssk = 0; ssk < SumAll.arguments.length; ssk++)
{

total += SumAll.arguments[ssk];
}
return total;

}

ScriptEase JavaScript 119

Function recursion
A recursive function is a function that calls itself or that calls another function that calls
the first function. Recursion is permitted in ScriptEase. Each call to a function is
independent of any other call to that function. (See the section on variable scope.) Be
aware that recursion has limits. If a function calls itself too many times, a script will run
out of memory and abort.

Do not worry if recursion is confusing, since you rarely have to use it. Just remember that
a function can call itself if it needs to. For example, the following function, factor(),
factors a number. Factoring is an ideal candidate for recursion because it is a repetitive
process where the result of one factor is then itself factored according to the same rules.
function factor(i) //recursive function to print all factors of i,
{// and return the number of factors in i

if (2 <= i)
{

for (var test = 2; test <= i; test++)
{

if (0 == (i % test))
{
 // found a factor, so print this factor then call
 // factor() recursively to find the next factor
 return(1 + factor(i/test));
}

}
}

// if this point was reached, then factor not found
return(0);
}

Error checking for functions
Some functions return a special value if they fail to do what they are supposed to do. For
example, the Clib.fopen() method opens or creates a file for a script to read from or write
to. But suppose that the computer is unable to open a file. In such a case, the Clib.fopen()
method returns null.

If you try to read from or write to a file that was not properly opened, you get all kinds of
errors. To prevent these errors, make sure that Clib.fopen() does not return null when it
tries to open a file. Instead of just calling Clib.fopen() as follows:
var fp = Clib.fopen("myfile.txt", "r");
check to make sure that null is not returned:
if (null == (var fp = Clib.fopen("myfile.txt", "r")))
{
 ErrorMsg("Clib.fopen returned null");
}
You may abort a script in such a case, but at least you will know why. See the section on
the Clib object.

The main() function

120 ScriptEase:ISDK/C

If a script has a function called main(), it is the first function executed. (For more
information on what takes place when a script is run, see the section on running a script.)
Other than the fact that main() is the first function executed, it is like other functions. If
the main() function returns a value, that value is returned to the operating system or
whatever process called the script.

The main() function automatically receives two parameters, which, by convention, are
called argc and argv. The parameter argc, argument count, is the number of parameters
passed to the script and the parameter argv is an array of strings, with each element being
one of the parameters. The first element, argv[0], of this array is always the name of the
script, thus if argc == 1, then no variables were passed to a script.

Arguments are passed to a script as parameters when it is called from a command line as
illustrated in the following line.
sewin32.exe jseedit.jse document.txt
In the example above, argc == 2, argv[0] == "jseedit.jse" and argv[1] == "document.txt".

The cfunction keyword
The cfunction keyword defines a function whose behavior is somewhat different than that
of standard functions. In a cfunction, variables and operators behave more as they would
in C, specifically in the ScriptEase implementation of C as a scripting language. The
cfunction is provided for the convenience of C programmers who are used to the way the
C language handles functions and variables and for those situations in which the
underlying logic of C is more efficient for a particular procedure.

You can change the contents of strings or parts of them by assigning a new character
value to a element of a character array. For example:
var string = "file"
string[0] = 'm'
This fragment creates a string containing the word "mile".

Array arithmetic
If you try to add a number to a string, instead of converting the number to a string and
concatenating the two, the starting point of the string will be shifted forward by the
number of characters in number.

For example, the statement:
"This is a test" + 3
evaluates to "This is a test3", in a standard JavaScript. In a cfunction, however, this
statement evaluates to "s is a test". The starting point of the string has been shifted by
three, so that string[0] is now 's' instead of 'T'. The 'T', 'h', and 'i' of the original string are
at indices [-3], [-2], and [-1], respectively.

Variables are passed to cfunctions by reference. In other words, if you have two
variables:
var George = "one"
var Martha = "one"

ScriptEase JavaScript 121

and you compare them with the "==" operator, the comparison evaluates to false and not
to true, as you might expect. The reason is that while George and Martha have the same
value, they are not the same variable since they point to different memory locations, and
therefore are not equal to each other. In functions declared with the function keyword,
string variables are compared by value, so the actual values of George and Martha are
compared. In such cases the result of comparing identical strings with "==" comparison is
true.

Arrays
An array is a special class of object that refers to its properties with numbers rather than
with variable names. Properties of an array object are called elements of the array. The
number used to identify an element is called an index and follows an array name in
brackets. Array indices must be either numbers or strings.

Array elements can be of any data type. The elements in an array do not all need to be of
the same type, and there is no limit to the number of elements an array may have.

The following statements demonstrate assigning values to arrays.
var array = new Array;
array[0] = "fish";
array[1] = "fowl";
array["joe"] = new Rectangle(3,4);
array[fool = Acreeping things@
array[goo + 1] = Aetc.@
The variables foo and goo must be either numbers or strings.

Since arrays use a number to identify the data they contain, they provide an easy way to
work with sequential data. For example, suppose you wanted to keep track of how many
jelly beans you ate each day, so you can graph your jelly bean consumption at the end of
the month.

Arrays provide an ideal solution for storing such data.
var April = new Array;
April[1] = 233;
April[2] = 344;
April[3] = 155;
April[4] = 32;
Now you have all your data stored conveniently in one variable. You can find out how
many jelly beans you ate on day x by checking the value of April[x]:
for(var x = 1; x < 32; x++)

Screen.write("On April " + x + " I ate " + April[x] +
" jellybeans.\n");

Arrays usually start at index [0], not index [1]. Note that arrays do not have to be
continuous, that is, you can have an array with elements at indices 0 and 2 but none at 1.

122 ScriptEase:ISDK/C

Creating arrays
Like other objects, arrays are created using the "new" operator and the Array constructor
function. There are three possible ways to use this function to create an array. The
simplest is to call the function with no parameters:
var a = new Array();
This line initializes variable a as an array with no elements. The parentheses are optional
when creating a new array, if there are no arguments. If you wish to create an array of a
predefined size, pass variable a the size as a parameter of the Array() function. The
following line creates an array with a length of the size passed.
var b = new Array(31);
In this case, an array with length 31 is created.

Finally, you can pass a number of elements to the Array() function which creates an array
containing all of the parameters passed. For example:
var c = new Array(5, 4, 3, 2, 1, "blast off");
creates an array with a length of 6. c[0] is set to 5, c[1] is set to 4, and so on up to c[5],
which is set to the string "blast off". Note that the first element of the array is c[0], not
c[1].

Arrays may also be created dynamically. By referring to a variable with an index in
brackets, a variable is created as or converted to an array. Arrays created in this manner
are unable to use the methods and properties described below, so it is recommended that
you use the Array() constructor function to create arrays.

Methods and properties of arrays
When an array is created with the Array() constructor function, a number of methods and
properties become available to it.

Properties of arrays
.length
The .length property returns one more than the largest index of the array. Note that this
value does not necessarily represent the actual number of elements in an array, since
elements do not have to be contiguous.

For example, suppose we had two arrays "ant" and "bee", with the following elements:
var ant = new Array; var bee = new Array;
ant[0] = 3 bee[0] = 88
ant[1] = 4 bee[3] = 99
ant[2] = 5
ant[3] = 6
The .length property of both ant and bee is equal to 4, even though ant has twice as many
actual elements as bee does.

By changing the value of the length property, you can remove array elements. For
example, if you change ant.length to 2, ant will only have the first two members, and the
values stored at the other indices will be lost. If we set bee.length to 2, then bee will
consist of two members: bee[0], with a value of 88, and bee[1], with an undefined value.

ScriptEase JavaScript 123

Methods of arrays
.join()
The .join() method creates a string of all of array elements. The method has an
optional parameter, a string which represents the character or characters that will separate
the array elements. By default, the array elements will be separated by a comma. For
example:
var a = new Array(3, 5, 6, 3);
var string = a.join();
will set the value of "string" to "3,5,6,3". You can use another string to separate the array
elements by passing it as an optional parameter to the .join() method. For example,
var a = new Array(3, 5, 6, 3);
var string = a.join("*/*");
creates the string "3*/*5*/*6*/*3".

.sort([compareFunction])
The .sort() method sorts members of an array and puts them in alphabetic order. If no
compare function is supplied, then elements are converted to strings to do the conversion,
which may cause some confusion. For example, the following code:
var a = new Array(32, 5, 6, 3)
a.sort();
var string = a.join();
creates a string "3, 32, 5, 6".

This behavior is often not what you want in a sort function. Fortunately, the .sort()
method allows you to specify a different way to sort the array elements. The name of the
function you want use to compare values is passed as the only parameter to sort().

If a compare function is supplied, the array elements are sorted according to the return
value of the compare function. If a and b are two elements being compared, then:

• If compareFunction(a, b) is less than zero, sort b to a lower index than a.
• If compareFunction(a, b) returns zero, leave a and b unchanged to each other.

C If compareFunction(a, b) is greater than zero, sort b to a higher index than a.
By specifying the following function as a sort function, you will get the desired result
when comparing numbers:
function compareNumbers(a, b)
{

return a - b
}
.reverse()
The reverse() method switches the order of the elements of an array, so that the last
element becomes the first.

The following code:
ar array = new Array;
array[0] = "ant";

124 ScriptEase:ISDK/C

array[1] = "bee";
array[2] = "wasp";
array.reverse();
produces the following array:
array[0] == "wasp"
array[1] == "bee"
array[2] == "ant"

Objects
Variables and functions may be grouped together in one variable and referenced as a
group. A compound variable of this sort is called an object in which each individual item
of the object is called a property. In general, it is adequate to think of object properties,
which are variables or constants, and of object methods, which are functions.

To refer to a property of an object, use both the name of the object and of the property,
separated by the operator ".", a period. Any valid variable name may be used as a
property name. For example, the code fragment below assigns values to the width and
height properties of a rectangle object and calculates the area of a rectangle and displays
the result:
var Rectangle;

Rectangle.height = 4;
Rectangle.width = 6;

Screen.write(Rectangle.height * Rectangle.width);
The main advantage of objects occurs with data that naturally occurs in groups. An object
forms a template that can be used to work with data groups in a consistent way. Instead of
having a single object called Rectangle, you can have a number of Rectangle objects,
each with their own values for width and height.

Predefining objects with constructor functions
A constructor function creates an object template. For example, a constructor function to
create Rectangle objects might be defined like the following.
function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
}
The keyword "this" is used to refer to the parameters passed to the constructor function
and can be conceptually thought of as "this object." To create a Rectangle object, call the
constructor function with the "new" operator:
var joe = new Rectangle(3,4)
var sally = new Rectangle(5,3);

ScriptEase JavaScript 125

This code fragment creates two rectangle objects: one named joe, with a width of 3 and a
height of 4, and another named sally, with a width of 5 and a height of 3.

Constructor functions create objects belonging to the same class. Every object created by
a constructor function is called an instance of that class. The examples above create a
Rectangle class and two instances of it. All of the instances of a class share the same
properties, although a particular instance of the class may have additional properties
unique to it. For example, if we add the following line:
joe.motto = "ad astra per aspera";
we add a motto property to the Rectangle joe. But the rectangle sally has no motto
property.

Methods - assigning functions to objects
Objects may contain functions as well as variables. A function assigned to an object is
called a method of that object.

Like a constructor function, a method refers to its variables with the "this" operator. The
following fragment is an example of a method that computes the area of a rectangle.
function rectangle_area()
{
 return this.width * this.height;
}
Because there are no parameters passed to it, this function is meaningless unless it is
called from an object. It needs to have an object to provide values for this.width and
this.height.

A method is assigned to an object as the following lines illustrates.
joe.area = rectangle_area;
The function will now use the values for height and width that were defined when we
created the rectangle object joe.

Methods may also be assigned in a constructor function, again using the this keyword.

For example, the following code:
function rectangle_area()
{
 return this.width * this.height;
}

function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
 this.area = rectangle_area;
}
creates an object class Rectangle with the rectangle_area method included as one of its
properties. The method is available to any instance of the class:

126 ScriptEase:ISDK/C

var joe = new Rectangle(3,4);
var sally = new Rectangle(5,3);

var area1 = joe.area();
var area2 = sally.area();
This code sets the value of area1 to 12, and the values of area2 to 15.

Object prototypes
An object prototype lets you specify a set of default values for an object. When an object
property that has not been assigned a value is accessed, the prototype is consulted. If such
a property exists in the prototype, its value is used for the object property.

Object prototypes are useful for two reasons: they ensure that all instances of an object
use the same default values, and they conserve the amount of memory needed to run a
script. When the two Rectangles, joe and sally, were created in the previous section, they
were each assigned an area method. Memory was allocated for this function twice, even
though the method is exactly the same in each instance. This redundant memory waste
can be avoided by putting the shared function or property in an object's prototype. Then
all instances of the object will use the same function instead of each using its own copy.

The following fragment shows how to create a Rectangle object with an area method in a
prototype.
function rectangle_area()
{
 return this.width * this.height;
}

function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
}

Rectangle.prototype.area = rectangle_area;
The rectangle_area method can now be accessed as a method of any Rectangle object as
shown in the following.
var area1 = joe.area();
var area2 = sally.area();
You can add methods and data to an object prototype at any time. The object class must
be defined, but you do not have to create an instance of the object before assigning it
prototype values. If you assign a method or data to an object prototype, all instances of
that object are updated to include the prototype.

If you try to write to a property that was assigned through a prototype, a new variable will
be created for the newly assigned value. This value will be used for the value of this
instance of the object's property. All other instances of the object will still refer to the
prototype for their values. If, for the sake of this example, we assume that joe is a special

ScriptEase JavaScript 127

Rectangle, whose area is equal to three times its width plus half its height, we can modify
joe as follows.
function joe_area()
{
 return (this.width * 3) + (this.height/2);
}
joe.area = joe_area;
This fragment creates a value, which in this case is a function, for joe.area that
supercedes the prototype value. The property sally.area is still the default value defined
by the prototype. The instance joe uses the new definition for its area method.

for . . . in
The for . . . in statement is a way to loop through all of the properties of an object, even if
the names of the properties are unknown. The statement has the following form.
for (property in object)
{
 DoSomething(object[property]);
}
where object is the name of an object previously defined in a script. When using the
for . . . in statement in this way, the statement block will execute once for every property
of the object. For each iteration of the loop, the variable property contains the name of
one of the properties of object and may be accessed with "object[property]". Note that
properties that have been marked with the DONT_ENUM attribute are not accessible to a
for . . . in statement.

with
The with statement is used to save time when working with objects. It lets you assign a
default object to a statement block, so you need not put the object name in front of its
properties and methods. The object is automatically supplied by the interpreter.

The following fragment illustrates using the Clib object.
with (Clib)
{
 printf("I am a camera");
 srand();
 xxx = rand() % 5;
 putchar(xxx);
}
The Clib methods: Clib.printf(), Clib.srand(), Clib.rand(), and Clib.putchar(), in the
sample above are called as if they had been written with Clib prefixed. All code in the
block following a with statement seems to be treated as if the methods associated with the
object named by the with statement were global functions. Global functions are still
treated normally, that is, you do not need to prefix "global." to them unless you are
distinguishing between two like-named functions common to both objects.

128 ScriptEase:ISDK/C

If you were to jump, from within a with statement, to another part of a script, the with
statement would no longer apply. In other words, the with statement only applies to the
code within its own block, regardless of how the interpreter accesses or leaves the block.

You may not use a goto statement or label to jump into or out of the middle of a with
statement block.

Dynamic objects
ScriptEase allows for direct access to the interior workings of how object properties are
called. If you wish, you may specify how an object accesses its data by replacing one of
the following routines which are internal to ScriptEase. The following methods are
available for modifying how an object calls its members. In all cases, the parameter,
property, is the name of the property being called.

._get(property, ExpectCall)
Whenever the value of a property is accessed, the ._get() method is called. By defining a
new ._get() method for an object, you modify the way it accesses property values.

The 4.20 _get function now receives a second parameter. This parameter is called
"ExpectCall" and is true if the parameter is being retrieved to make a function call, and
false for other situations.
For example, in this case:

 obj.foo;

The second parameter will be false. But in this case

 obj.foo();

the second parameter will be true.

The example following modifies the Rectangle object created earlier with a new ._get()
method. Whenever you access the value of one of the object's properties, it will inform
you if the Rectangle is a square. After the object is initialized, the main() function creates
an instance of the object with the width and height properties both set to 3. When the
value of the Rectangle.area() method is retrieved, used in a Clib.printf() statement, the
dynamic ._get() function is called, which displays, "The rectangle is a square," since
width and height are equal.

ScriptEase JavaScript 129

function rectangle_area()
{
 return this.width * this.height;
}

function rectangle_get(property)
{
 if (this.width == this.height)
 Clib.printf("The rectangle is a square.");
 return this [property];
}

function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
 this._get = rectangle_get;
}

Rectangle.prototype.area = rectangle_area;

main()
{
 var rect = new Rectangle(3, 3);
 Clib.printf("The area of the rectangle is %d.",
 rect.area());
 Clib.getch();
}

._put(property, value)
This method controls the way that new data is assigned to a property.

._canPut(property)
This method returns a boolean value indicating whether the property can be written to or
not, that is, whether it is read-only or not. For example, you could modify this property to
notify users when they try to change read-only values.

._hasProperty(property)
This method returns a boolean value indicating whether or not a property exists.

._delete(property)
This method is called whenever a property is deleted with the delete operator. The
property will be "_delete" when the object itself is being deleted.

._defaultValue(hint)
This method returns the primitive value of a variable.

130 ScriptEase:ISDK/C

The parameter hint should be either a string or a number that indicates the preferred data
type to return. If hint is a string, the method will return a string if possible, otherwise a
different type. The actual value of hint is ignored.

._construct(. . .)
This method is called whenever a new object is created with the new operator. The object
will have been already created and passed as the this variable to the .construct() method.

._call(. . .)
The call function is called whenever an object method is called. Whatever parameters are
passed to the original function will be passed to the call() function.

The following example creates an Annoying object that beeps whenever it retrieves the
value of a property.
function myget(prop)
{
 System.beep();
 return this[property];
}

var Annoying = new Object;

Annoying.get = myget;

Note that the System.beep() method is used only for this example and must be explicitly
created for actual use.

._operator(op,operand)
Operator Overloading
ScriptEase allows you to overload the standard arithmetic operators when used with your
objects. Consider this example:

 var a = obj + 10;

If 'obj' is one of your own objects, you may have some special meaning you'd like the
addition operator to have when applied to it. Operator overloading allows this to be done.

Whenever an object is the first operand to an arithmetic operation, it has the opportunity
to redefine what that operation means.
All of the arithmetic operators can be overloaded, such as +, -, /, >>, and so forth.
In addition, the unary operators (i.e. those that have only one operand, the object) can
also be overloaded. These are the operators ~, !, ++, --, + , and -.
Finally, the assignment operator (=) can also be overloaded.

ScriptEase JavaScript 131

Please note that the compound assignment operators (i.e., *=, +=, etc) are treated exactly
like you wrote out the statement. In other words,

 a += b;

is treated just like:

 a = a + b;

Overloading the operators will work that way. In this case, if 'a' is an object with
overloaded operators, that statement will involve two operators, a '+' and an '='.

To overload operators on a particular object, you simply give the object the method
'_operator'. This works like all of the other dynamic object methods. For instance, you
can put the '_operator' method in a prototype so that all objects of that class inherit the
operator overloading. Here is an example:

 function overload(op,operand)
 {
 Clib.printf("overloading occurring on operator
 '%s'\n",op);
 return DYN_DEFAULT;
 }

 var myObject = new Object();
 myObject._operator = overload;

 myObject = 10;

The operator overloading function is passed two parameters. The first parameter is the
operator itself, in the form of a string. It will be "+" or "-" or "++", etc. The second
parameter is the second operand to the operator.
If the object operation being overloaded is 'obj + 4', for instance, then the first parameter
is "+" and the second parameter is the number 4. The unary operators (such as '-obj') do
not have a second operand, so the second parameter is undefined. You can use this to
distinguish the operators + and - which can be used either way, i.e. the difference
between 'obj + 4' and '+obj'.

Whatever value the operator function returns is taken to be the value of the expression. If
the operator function returns DYN_DEFAULT or
OPERATOR_DEFAULT_BEHAVIOR, then the normal operation is done.
In many cases, you will not want to override all of the operators that could be applied to
your object, so you will return this value if the operator is not one you are interested in. In

132 ScriptEase:ISDK/C

the example above, we print out a message when the object is used in an operation, but
we don't change what the operation does. We always return DYN_DEFAULT and thus
do the normal ECMAScript operation.

The global object and its properties
Global variables are members of the global object. To access global properties, you do
not need to use an object name. For example, to access the isNaN() method, which tests
to see whether a value is equal to the special value NaN you can call either of the
following.
isNaN(value);
or
global.isNaN(value);
The exception to this rule occurs when you are in a function that has a local variable with
the same name as a global variable. In such a case, you must use the global keyword to
reference the global variable.

Properties of the global object
._argc
This property refers to the number of parameters passed to the main() function of a script.
The name of the script is always the first parameter, so if ._argc == 1, then the script
received no arguments. See the main() function for more information on argc and the
main() function.

._argv
This property is an array of strings. Each string is a parameter passed to the script's
main() function. The value of argv[0] is always the name of the script being called. The
first parameter passed to the script is in argv[1]. See the main() function for more
information on argc, argv, and the main() function.

Methods of the global object
.eval(expression)
This method evaluates whatever is represented by the parameter expression. If expression
is not a string, it will be returned. For example, calling eval(5) returns the value 5.

If expression is a string, the interpreter tries to interpret the string as if it were JavaScript
code. If successful, the method returns the last variable with which was working, for
example, the return variable. If the method is not successful, it returns the special value,
undefined.

ScriptEase JavaScript 133

.parseInt(string [, radix])
This method converts an alphanumeric string to an integer number. The first parameter,
string, is the string to be converted, and the second parameter, radix, is an optional
number indicating which base to use for the number. If the radix parameter is not
supplied, the method defaults to base 10 which is decimal. If the first digit of string is a
zero, radix defaults to base 8 which is octal. If the first digit is zero followed by an "x",
that is, "0x", radix defaults to base 16 which is hexadecimal.

Whitespace characters at the beginning of the string are ignored. The first non-whitespace
character must be either a digit or a minus sign (-). All numeric characters following the
string will be read, up to the first non-numeric character, and the result will be converted
into a number, expressed in the base specified by the radix variable. All characters
including and following the first non-numeric character are ignored. If the string is unable
to be converted to a number, the special value NaN will be returned.

.parseFloat(string)
This method is similar to parseInt() except that it reads decimal numbers with fractional
parts. In other words, the first period, ".", in the parameter string is considered to be a
decimal point, and any following digits are the fractional part of the number. The method
.parseFloat() does not take a second parameter.

.escape(string)
The .escape() method receives a string and escapes the special characters so that the
string may be used with a URL. All uppercase and lowercase letters, numbers, and the
special symbols, @ * + - . /, remain in the string. All other characters are replaced by
their respective Unicode sequence.

.unescape(string)
This method is the reverse of the .escape() method and removes escape sequences from a
string and replaces them with the relevant characters.

.isNaN(number)
This method returns true if the parameter, number, evaluates to NaN, Not a Number.
Otherwise it returns false.

.isFinite(number)
This method returns true if the parameter, number, is or can be converted to a number. If
the parameter evaluates as NaN, Number.POSITIVE_INFINITY, or
Number.NEGATIVE_INFINITY, the method returns false.

134 ScriptEase:ISDK/C

Exception Handling via Scripts
First for script code, exceptions are trapped with try:

try
{
 do something;
}
catch(e)
{
 Clib.printf("Something bad happened:
%s\n",e.toString();
}

A catch clause 'eats' the error, so the rest of the script continues. If you 'throw' something,
that something is passed up the chain as an error. You can throw the error object you
caught in a catch statement to make the error be 'unhandled'.

For instance:

try
{
 do something;
}
catch(e)
{
 Clib.printf("Something bad happened:
%s\n",e.toString();
 throw e;
}

In this case, if there is an error, it will be printed out, but then the program will still stop
with that error.

You can raise arbitrary errors as you like in a program, i.e.:

throw new TypeError("You are not my type!");

A try block can also have a finally clause, e.g.:

try
{
 do something;
}
finally
{
 Clib.printf("Always happens.\n");
}

The finally clause ALWAYS is executed right before the block is left, even if left by a
goto, return, error, or whatever. If the finally block does a control transfer (i.e. it does a

ScriptEase JavaScript 135

goto, throw, or return), that takes precedence, else whatever transfer was pending actually
does happen.

So if you do:

try
{
 return 10;
}
finally
{
 Clib.printf("BYE!\n");
}

This will print BYE! then return 10 from the function. If you do:

try
{
 return 10;
}
finally
{
 goto no_way;
}

no_way: ...

In this case, the goto takes precedence over the return, so the return is ignored and
execution continue with the '...' code.

Preprocessing
This section describes directives that affect the processing of a ScriptEase script prior to
finally compiling, tokenizing, and executing the script.

Preprocessor Directives
The following ScriptEase statements that begin with a # character are collectively called
preprocessor directives, since they are processed before a script is actually executed and
direct the way the script commands are interpreted. Preprocessor directives can only be
used with the ScriptEase interpreter. Other JavaScript interpreters will not recognize
them.

#define
The #define directive is used to replace a token or almost any identifier with other
characters. The #define directive is executed while the script is being read into the
interpreter, before the script itself is executed. The #define directive causes one string to

136 ScriptEase:ISDK/C

be replaced by another in the script that goes to the interpreter. All substitutions are made
before the code is interpreted. A #define directive has the following structure.
#define token replacement
This line results in all subsequent occurrences of "token" being replaced by
"replacement". Consider the following line.
#define NumberOfCountriesInSouthAmerica 13
The define statement increases program legibility and makes it easier to change code
later. If Bolivia and Peru decide someday to unite, you only have to change the #define
statement to update your program. Otherwise, you would have to go through your script
looking for all occurrences of the number 13, decide when they refer to the number of
countries in South America, and change them to the number 12.

Likewise, if you write screen routines for a 25-line monitor, and then later decide to make
it a 50-line monitor, you're better off altering the following #define directive from:
#define ROW_COUNT 25
to
#define ROW_COUNT 50
and using ROW_COUNT in your code. You only have to make one change in your script
instead of many.

#include
The #include directive lets you include other scripts, and all of the functions contained
therein, as a part of the code you are writing. Usually #include lines are placed at the
beginning of the script and consist only of the #include statement and the name of the file
to be included, as in the following.
#include <gdi.jsh>
#include "gdi.jsh"
#include 'gdi.jsh'
Any one of these lines make all of the functions in the library file gdi.jsh available to the
script that has the line. The quote characters, ' or ", may be used in place of the angled
brackets < and >.

To include several files in one program simply use multiple #include directives as shown.
#include <screen.jsh>
#include <keyboard.jsh>
#include <init.jsh>
#include <comm.jsh>
The ScriptEase interpreter will not include a file more than once, so if a file has already
been included, a second or subsequent #include directive has no effect. ScriptEase ships
with a large number of libraries of pre-written functions that you can use. Library files
are plain text files, as are all ScriptEase scripts, and have the extension .jsh as a default.

Since these libraries are external to ScriptEase, they are less static than the standard
function libraries, and can be easily expanded or modified as the need arises. The most
recent versions of .jsh libraries are listed on the Nombas downloads page at the following

ScriptEase JavaScript 137

web site:

 www.nombas.com

#if, #ifdef, #elif, #else, #endif
These directives are all preprocessor conditionals and allow you to specify a different set
of script source based on different conditions at run time. Conditional directives are
frequently used in scripts designed to run on different operating systems by ensuring that
scripts include files that are appropriate for the operating system being used.

#if is used like an if statement. #else corresponds to an else statement. #elif corresponds
to an else if statement. These directives define which block of code will actually be used
when a script is interpreted and executed. You must use them with terminating #endif
directives to mark the ends of code blocks.
var fullPathOfFile = Clib.rsprintf("%s\\%s\\%s\\%s",
For example, suppose you have a script that builds long path names from directories
supplied to it in different variables. If you are working in a DOS-based environment, the
backslash character is used to separate directories, so you could indicate the full path of a
file in DOS as follows:
 rootdirectory, subdirectory1,
 subdirectory2, filename);
If you ported this script to a UNIX machine, however, you would run into problems since
UNIX uses forward slashes to separate directories.

You can get around this problem by defining the separator character differently for each
operating system:
#if defined(_UNIX_)
 #define PathChar '/'
#elif defined(_MAC_)
 #define PathChar ':'
#else
 #define PathChar '\\'
#endif
By putting the separator character in a variable, you can make the script work on any
operating system:
var fullPathOfFile = Clib.rsprintf("%s%c%s%c%s%c%s",
rootdirectory,

PathChar, subdirectory1,
PathChar, subdirectory2,
PathChar, filename);

The #ifdef directive is another limited form of #if that is equivalent to "#if!defined(var)".

138 ScriptEase:ISDK/C

#link
The #link command incorporates pre-compiled libraries, such as dynamic link library
(.dll) files, into the ScriptEase interpreter. The #link directive is similar to the #include
statement with no parameters. For example, the directive
#link "sesock"
lets the interpreter use the functions for TCI/IP socket communication. #link takes no
parameters other than the name of the library being linked.

Although you could write these functions in JavaScript, the functions in the #link
libraries are processor intensive and run much more quickly from a compiled source.

Nombas supplies many #link libraries, such as:

GD for generating .gif files and other graphics functions

ODBC for working with ODBC databases

OLEAUTOC for doing OLE automation

REGEXPSN to perform complex searches

SESOCK for working with sockets

Contact Nombas for more information on the #link developer's kit, which lets users to
create customized #link libraries. The most recent versions of #link libraries are listed on
the Nombas downloads page on our web site:

 www.nombas.com

Integrating the Debugger 139

Integrating the ScriptEase Debugger

 Please Note:

 The current version of the ScriptEase:ISDK/Java does not have the debugger
implemented. Please check our web site, Nombas.com, for updated information for
when this feature is implemented and your ISDK software can be upgraded. This
chapter is included in the manual for when that upgrade is available.

Using the ScriptEase:ISDK, you can debug your applications using Nombas's debugger.
The debugger itself is a Windows application, so you'll need a windows machine to do
your debugging on. However, your application can be running on any machine that can
communicate with your debugging machine. Nombas provides support for debugging via
TCP-IP, but you can extend the debugger to use other communication protocols.

For end-user information on using the debugger, please see the chapter, AUsing the
ScriptEase Debugger.@

Using a Nombas protocol model
Nombas has provided two models of debugging to cover many situations. First, on
windows systems, you can communicate via shared memory. In this case, the debugger
and the application must both be running on the same Windows machine. Either the
application can start the debugger, or the debugger can start the application (depending
on how you set it up.)

If you are debugging using the TCP-IP model, you need to run the ScriptEase IDE
Network Extender (called the proxy) on the debugging machine before running your
application. The application will communicate with the proxy in place of the debugger.
The proxy will make sure the debugger starts up and receives the information it needs to
debug your application.

140 ScriptEase:ISDK/Java 4.10

Defining your own protocol model
To define a new protocol model for communication between the debugger and your
application requires you to provide a number of routines linked with your application.
These are documented at the top of the file 'srcdbg\debugme.h'. You can examine the file
'srcdbg\debugme.c' to see how these routines are implemented in the Nombas-provided
models. If you are defining your own model, you will need to also add that model to the
proxy.

Code changes to your application
You must do six things to make sure your application is debuggable. They are described
in order:

Set Options
#define JSE_DEBUGGABLE 1

If you are using TCP-IP, set these flags:

#define JSE_DEBUG_TCPIP
#define JSE_DEBUG_MASTER
#define JSE_DEBUG_RUN
#define JSE_DEBUG_FILES
#define JSE_DEBUG_REMOTE
#define JSE_DEBUG_PASSWORD

(Note: JSE_DEBUG_PASSWORD only activates the password code. You must still actually
setup a password if you are going to use it.)

Otherwise, if using shared memory set these flags:

#define JSE_DEBUG_MEMORY
#define JSE_DEBUG_RUN

This setup for shared memory assumes you want the debugger to start the application. If
you'd like it to be the other way around (i.e. the application starts the debugger), add:

#define JSE_DEBUG_MASTER

Add files to your project
Next add the file 'srcdbg\debugme.c' to your application. Make sure the 'srcdbg' directory
is in your include path if it isn't already.

Integrating the Debugger 141

Update your ToolkitAppData structure and jseopt.h
If you don't currently allocate one, you must do so. You can get a definition for one by
include 'seclib\seseclib.h'. Alternately, if you already are using your own such structure,
add the following to it:

#if defined(JSE_DEBUGGABLE)
struct debugMe * debugme;

#endif

You need some includes added at the end of your jseopt.h file:

 #if defined(JSE_DEBUGGABLE)
 #if defined(__JSE_OS2TEXT__) ||

defined(__JSE_OS2PM__)
 #include <sys\socket.h>
 #include <netinet\in.h>
 #include <netdb.h>
 #include <utils.h>
 #include <nerrno.h>
 #include <sys\ioctl.h>

 #endif
 #include "dbgshare.h"
 #include "proxy.h"
 #include "debugme.h"

 #endif

Initialize debugging
After you have initialized your external link and added any libraries, but before you start
interpretting you must initialize the connection to the debugger. This is done with the
following code:

 #if defined(JSE_DEBUGGABLE)
 debugmeInit(jsecontext,<command line>,<instance>);

 #endif
The 'command line' is only needed for shared memory debugging if the debugger is going
to be starting up your application. It should be the entire command line, which is easily
constructed by concatenating the entries of the argv[] array separated by spaces. The
routine will extract the debugging command information from the command line. When
it returns, you must reparse the command line into individual arguments (which is easily
accomplished using strtok().) For the TCP-IP model, the command line parameter is
ignored, so you can safely pass NULL.

The 'instance' parameter is the Windows HINSTANCE value for your program. It is only
needed if debugging on a Windows platform using a windowed application (as opposed
to a console application.) On other platforms, debugmeInit() does not take a third
parameter.

Finally, for the TCP-IP version, you must specify what machine will be the debugging

142 ScriptEase:ISDK/Java 4.10

machine. You do this by setting the environment variable 'REMOTE_ADDR' to the
machine host name of the debugging machine. You can set this either before launching
your program or within your program before calling debugmeInit(). The machine in
question needs to have the proxy running as described above.

Call the debugger hook
Finally, you must call the debugger in your MayIContinue function. Here is an example.
If you already do some code in your function, do this in addition.

 jsebool JSE_CFUNC FAR_CALL
 ContinueFunction(jseContext jsecontext)
 {

 struct ToolkitAppData * SeData =
ToolkitAppDataFromContext(jsecontext);

 #if defined(JSE_DEBUGGABLE)

 if (NULL != SeData->debugme)
 {

 debugmeDebug(SeData->debugme,jsecontext);
 if (jseQuitFlagged(jsecontext))

 return False;
 }

 #endif

 jsecontext = jsecontext; /* to prevent warning
about unused

 /* variable */
 return True;

 }

Integrating the Debugger 143

Terminate debugging
This code shows you how to terminate debugging. It assumes 'AppData' is a pointer to
your application data structure.

 # if defined(JSE_DEBUGGABLE)
 {

 struct debugMe *debugme = AppData->debugme;

 if (NULL != debugme)
 {

 debugmeHasTerminated(debugme);

 while (debugme)
 {

 debugmeDebug(debugme,jsecontext);
 debugme = AppData->debugme;
 }

 }
 debugmeTerm(jsecontext);

 }
 # endif

You must terminate debugging before you destroy the context. You usually terminate
debugging right before you exit. This means all scripts you interpret will be debugged in
a single session. However, you can terminate then restart debugging if you want each
jseInterpret() to be in its own debug session.

Notes
Once you have made these changes, your application can be debugged. You can make all
of these changes and still not debug your application if you skip Initialization of
debugging. So, if you want, you can only initialize the connection to the debugger if your
user selects a special 'debug application' menu item or such.

You can currently only debug scripts that have a filename (i.e. if you tell jseInterpret() to
interpret the contents of a file.)

Samples
In seisdk\samples\debug, you can find a modified version of 'simple0' that is debuggable.
Run the application from an MS-DOS prompt after first setting 'REMOTE_ADDR' as
described above.

144 ScriptEase:ISDK/Java 4.10

Example: Modifying your JSEOPT.H file for debugging
Any application that uses the debugger must have the following lines in its JSEOPT.H
file:

 #define JSE_DEBUGGABLE 1
 #define JSE_DEBUG_RUN
Set these flags if you will be using the debugger remotely:

 #define JSE_DEBUG_TCPIP
 #define JSE_DEBUG_MASTER
 #define JSE_DEBUG_FILES
 #define JSE_DEBUG_REMOTE
 #define JSE_DEBUG_PASSWORD
Set this flag if you will be using the debugger locally:

 #define JSE_DEBUG_MEMORY
With the options described above, the debugger will launch the application in order to
debug it. For the reverse, in which the application launches the debugger, define the
following:

 #define JSE_DEBUG_MASTER

Language Objects & Libraries 145

Language Objects & Libraries

ScriptEase Global Functions
The global functions described in this section are unique to the ScriptEase
implementation of JavaScript. In other words, they are not part of the ECMAScript
standard, but they are useful. Avoid using these functions in a script if it will be used with
a JavaScript interpreter that does not support these unique functions.
Like other global items these functions are actually methods of the global Object and can
be called with function or method notation. The two following lines of code are
equivalent.

 var aString = ToString(123)
 var aString = global.ToString(123)

General
defined(value)
This function tests whether a variable, Object property, or value has been defined. The
function returns true if a value has been defined, or else returns false. The function
defined() may be used during script execution and during preprocessing. When used in
preprocessing with the directive #if, the function defined() is similar to the directive
#ifdef, but is more powerful. The following fragment illustrates three uses of defined().

 var t = 1;
 #if defined(_WIN32_)
 Screen.writeln("in Win32");
 if (defined(t))
 Screen.writeln("t is defined");
 if (!defined(t.t))
 Screen.writeln("t.t is not defined");
 #endif

The first use of defined() checks a value available to the preprocessor to determine which
platform is running the script. The second use checks a variable "t". The third use checks
an object "t.t"

getArrayLength(array[, MinIndex])
This function should be used with dynamically created arrays, that is, with arrays that
were not created using the Array() constructor and new operator. When working with
arrays created using the Array() constructor and new operator, use the .length property of

146 ScriptEase:ISDK/Java 4.10

the arrays. The .length property is not available for dynamically created arrays which
must use the functions, getArrayLength() and setArrayLength(), when working with array
lengths.
The getArrayLength() function returns the length of a dynamic array, which is one more
than the highest index of an array, if the first element of the array is at index 0, which is
most common. If the parameter MinIndex is passed, then it is used to set to the minimum
index, which will be zero or less. You can use this function to get the length of an array
that was not created with the Array() constructor function.
This function and its counterpart, setArrayLength(), are intended for use with
dynamically created arrays, that is, arrays not created with the Array() constructor
function. Use the .length property to get the length of arrays created with the constructor
function and not getArrayLength().

getAttributes(variable)
This function gets and returns the variable attributes for the parameter variable. Variable
attributes may be set using the function setAttributes(). See setAttributes() for more
information and descriptions of the attributes of variables that can be set.

setArrayLength(array[, MinIndex], length])
This function sets the first index and length of an array. Any elements outside the bounds
set by MinIndex and length are lost, that is, become undefined. If only two arguments are
passed to setArrayLength(), the second argument is length and the minimum index of the
newly sized array is 0. If three arguments are passed to setArrayLength(), the second
argument, which must be 0 or less, is the minimum index of the newly sized array, and
the third argument is the length.

setAttributes(variable, attributes)
This function sets the variable attributes for the parameter variable using the parameter
attributes. Variables in ScriptEase may have various attributes set that affect the behavior
of variables. This function has no return.
The following list describes the attributes that may be set for variables. Multiple
attributes may be set for variables by combining them with the or operator. For example,
the flag setting READ_ONLY | DONT_ENUM sets both of these attributes for one
variable.

Language Objects & Libraries 147

DONT_DELETE This variable may not be deleted. If the delete operator
is used with a variable, nothing is done.

DONT_ENUM This variable is not enumerated when using a for/in
loop.

IMPLICIT_PARENTS This attribute applies only to local functions and allows
a scope chain to be altered based on the __parent__
property of the "this" variable. If this flag is set, if the
__parent__ property is present, and if a variable is not
found in the local variable context, activation object, of
a function, then the parents of the "this" variable are
searched backwards before searching the global object.
The example below illustrates the effect of this flag.

IMPLICIT_THIS This attribute applies only to local functions. If this
flag is set, then the "this" variable is inserted into a
scope chain before the activation object. For example,
if variable TestVar is not found in a local variable
context, activation object, the interpreter searches the
current "this" variable of a function.

READ_ONLY This variable is read-only. Any attempt to write to or
change this variable fails.

The following fragment illustrates the use of setAttributes() and the behavior affected by
the IMPLICIT_PARENTS flag.

 function foo()
 {
 value = 5;
 }
 setAttributes(foo, IMPLICIT_PARENTS)

 var a;
 a.value = 4;
 var b;
 b.__parent__ = a;
 b.foo = foo;
 b.foo();

After this code is run, a.value is set to 5.

undefine(value)
This function undefines a variable, Object property, or value. If a value was previously
defined so that its use with the function defined() returns true, then after using undefine()
with the value, defined() returns false. Undefining a value is different than setting a value
to null.
In the following fragment, the variable n is defined with the number value of 2, and then

148 ScriptEase:ISDK/Java 4.10

undefined.

 var n = 2;
 undefine(n);

In the following fragment an object o is created and a property o.one is defined. The
property is then undefined but the object o remains defined.

 var o = new Object;
 o.one = 1;
 undefine(o.one);

Conversion or casting
Though ScriptEase does well in automatic data conversion, there are times when the
types of variables or data must be specified and controlled. Each of the following casting
functions has one parameter, which is a variable or piece of data, to be converted to or
cast as the data type specified in the name of the function. For example, the following
fragment creates two variables.
 var aString = ToString(123);
 var aNumber = ToNumber("123");
The first variable aString is created as a string from the number 123 converted to or cast
as a string. The second variable aNumber is created as a number from the string "123"
converted to or cast as a number. Since aString had already been created with the value
"123", the second line could also have been:
 var aNumber = ToNumber(aString);

The type of the variable or piece of data passed as a parameter affects the returns of some
of the functions.

ToBoolean(value)
The following table lists how different data types are converted by this function.

Data type Return
Boolean same as value
Buffer same as for String
null false
Number false if value is 0, +0, -0 or NaN, else true
Object true
String false if empty string, "", else true
undefined false

ToBuffer(value)
This function converts value to a buffer in a manner similar to ToString() except that the
resulting array of characters is a sequence of ASCII bytes and not a unicode string.

Language Objects & Libraries 149

ToBytes(value)
This function converts value to a buffer and differs from ToBuffer() in that the
conversion is actually a raw transfer of data to a buffer. The raw transfer does not convert
unicode values to corresponding ASCII values. For example, the unicode string "Hit"
may be stored in a buffer as "\0H\0\i\0t", that is, as the hexadecimal sequence: 00 48 00
69 00 74.

ToInt32(value)
This function is the same as ToInteger() except that if the return is an integer, it is in the
range of -231 through 231 - 1.

ToInteger(value)
This function converts value to an integer type. First, call ToNumber(). If result is NaN,
return +0. If result is +0, -0, +Infinity or -Infinity, return result. Else return
floor(abs(result)) with the appropriate sign. For example, the value -4.8 is converted to -
4.

ToNumber(value)
The following table lists how different data types are converted by this function.

Data type Return
Boolean +0, if value is false, else 1
Buffer same as for String
null 0
Number same as value
Object first, call ToPrimitive(), then call ToNumber() and

return result
String number, if successful, else NaN
undefined NaN

ToObject(value)
The following table lists how different data types are converted by this function.

Data type Return
Boolean new Boolean object with value
null generate runtime error
Number new Number object with value
Object same as parameter
String new String object with value
undefined generate runtime error

ToPrimitive(value)
This function does conversions only for parameters of type Object. An internal default

150 ScriptEase:ISDK/Java 4.10

value of the Object is returned.

ToString(value)
The following table lists how different data types are converted by this function.

Data type Return
Boolean "false", if value is false, else "true"
null "null"
Number if value is NaN, return "NaN". If +0 or -0, return "0".

If Infinity, return "Infinity". If a number, return a
string representing the number. If a number is
negative, return "-" concatenated with the string
representation of the number.

Object first, call ToPrimitive(), then call ToString() and
return result

String same as value
undefined "undefined"

ToUint16(value)
This function is the same as ToInteger() except that if the return is an integer, it is in the
range of 0 through 216 - 1.

ToUint32(value)
This function is the same as ToInteger() except that if the return is an integer, it is in the
range of 232 - 1.

The Buffer Object
The Buffer object provides a way to manipulate data at a very basic level. It is needed
whenever the relative location of data in memory is important. Any type of data may be
stored in a buffer object. A new Buffer object may be created from scratch or from a
string, buffer, or Buffer object, in which case the contents of the string or buffer will be
copied into the newly created Buffer object. To create a Buffer object, follow the syntax
below.

 new Buffer([size] [, unicode] [, bigEndian]);

A line of code following this syntax creates a new buffer object. If size is specified, then
the new buffer is created with the specified size, filled with NULL bytes. If no size is
specified, then the buffer is created with a size of 0, though it can be extended
dynamically later. The unicode parameter is an optional boolean flag describing the
initial state of the .unicode flag of the object. Similarly, bigEndian describes the initial
state of the bigEndian parameter of the buffer. If unspecified, these parameters default to
the values described below.

Language Objects & Libraries 151

 new Buffer(string [, unicode] [, bigEndian]);

A line of code following this syntax creates a new buffer object from the string provided.
If string is a unicode string (unicode is enabled within the application), then the buffer is
created as a unicode string. This behavior can be overridden by specifying true or false
with the optional boolean unicode parameter. If this parameter is set to false, then the
buffer is created as an ASCII string, regardless of whether or not the original string was
in unicode or not.
Similarly, specifying true will ensure that the buffer is created as a unicode string. The
size of the buffer is the length of the string (twice the length if it is unicode). This
constructor does not add a terminating NULL byte at the end of the string. The bigEndian
flag behaves the same way as in the first constructor.

 new Buffer(buffer [, unicode] [, bigEndian]);

A line of code following this syntax creates a new buffer object from the buffer provided.
The contents of the buffer are copied as-is into the new buffer object. The unicode and
bigEndian parameters do not affect this conversion, though they do set the relevant flags
for future use.

 new Buffer(bufferObject);

A line of code following this syntax creates a new buffer object from another buffer
object. Everything is duplicated exactly from the other bufferObject, including the cursor
location, size, and data.
All of the above calls have an equivalent call form (such as "Buffer(15)"), except that this
simply returns the buffer part (equivalent to the data member), rather than the entire
Buffer object.

Buffer Object Properties
.size
The size of the Buffer object. This property may be assigned to, such as "foo.size = 5". If
a user changes the size of the buffer to something larger, then it is filled with NULL
bytes. If the user sets the size to a value smaller than the current position of the cursor,
then the cursor is moved to the end of the new buffer.

.cursor
The current position within a buffer. This value is always between 0 and .size. It can be
assigned to as well. If a user attempts to move the cursor beyond the end of a buffer, than
the buffer is extended to accommodate the new position, and filled with NULL bytes. If a
user attempts to set the cursor to less than 0, then it is set to the beginning of the buffer, to
position 0.

.unicode

152 ScriptEase:ISDK/Java 4.10

This property is a boolean flag specifying whether to use unicode strings when calling
.getString() and .putString(). This value is set when the buffer is created, but may be
changed at any time. This property defaults to the unicode status of the underlying
ScriptEase engine.

.bigEndian
This property is a boolean flag specifying whether to use bigEndian byte ordering when
calling .getValue() and .putValue(). This value is set when a buffer is created, but may be
changed at any time. This property defaults to the state of the underlying OS and
processor.

.data
This property is a reference to the internal data of a buffer. It is only a temporary value to
assist in passing parameters to OS and system-library type calls. In the future, all
ScriptEase library functions should be able to recognize Buffer objects and to get this
member on their own.

Buffer Object Methods
.putValue(value [, valueSize] [, valueType])
This method puts the specified value into a buffer. The value must be a number.
ValueSize or both valueSize and valueType may be passed as additional parameters.
ValueSize is a positive number describing the number of bytes to be used and defaults to
1. Acceptable values for valueSize are 1,2,3,4,8, and 10, providing that it does not
conflict with the optional valueType flag. (See listing below.)
The parameter valueType must be one of the following: "signed", "unsigned", or "float".
It defaults to "signed." The valueType parameter describes the type of data to be read.
Combined with valueSize, any type of data can be put. The following list describes the
acceptable combinations of valueSize and valueType:

valueSize valueType
1 signed, unsigned
2 signed, unsigned
3 signed, unsigned
4 signed, unsigned, float
8 float
10 float (Not supported on every system)

Any other combination will cause an error. The value is put into the buffer at the current
cursor position, and the cursor value is automatically incremented by the size of the value
to reflect this addition. To explicitly put a value at a specific location while preserving the
cursor location, do something similar to the following.

 var oldCursor = foo.cursor; // Save the old cursor location
 foo.cursor = 20; // Set to new location
 foo.putValue(goo); // Put goo at offset 20
 foo.cursor = oldCursor // Restore cursor location

Language Objects & Libraries 153

The value is put into the buffer with byte-ordering according to the current setting of the
.bigEndian flag. Note that when putting float values as a smaller size, such as 4, some
significant figures are lost. A value such as "1.4" will actually be converted to something
to the effect of "1.39999974". This is sufficiently insignificant to ignore, but note that the
following does not hold true:

foo.putValue(1.4,4,"float");
 foo.cursor -= 4;
 if(foo.getValue(4,"float") != 1.4)
 // This is not necessarily true due to sig. dig. loss.

This situation can be prevented by using 8 or 10 as a valueSize instead of 4. A valueSize
of 4 may still be used for floating point values, but be aware that some loss of significant
figures may occur (though it may not be enough to affect most calculations).

.getValue([valueSize] [, valueType])
This method returns a value from the specified position in a buffer object. This call is
similar to the putValue() function, except that it gets a value instead of puts a value.

.putString(string)
This method puts a string into the buffer object at the current cursor position. If the
.unicode flag is set within the Buffer object, then the string is put as a unicode string,
otherwise it is put as an ASCII string. The cursor is incremented by the length of the
string (or twice the length if it is put as a unicode string). Note that terminating NULL
byte is not added at end of the string. To put a NULL terminated string, the following can
be done.

 foo. putString("Hello"); // Put the string into the buffer
 foo.putValue(0); // Add terminating NULL byte

.getString([length])
This method returns a string starting from the current cursor location and continuing for
length bytes. If no length is specified, then the method reads until a NULL byte is
encountered or the end of the buffer is reached. The string is read according to the value
of the .unicode flag of the buffer. A terminating NULL byte is not added, even if a length
parameter is not provided.

.toString()
This method returns a string equivalent of the current state of the buffer. Any conversion
to or from unicode is done according to the .unicode flag of the object.

.subBuffer(beginning, end);
This method returns another Buffer object consisting of the data between the positions
specified by the parameters: beginning and end. If the parameter beginning is less than 0,
then it is treated as 0, the start of the buffer. If the parameter end is beyond the end of the

154 ScriptEase:ISDK/Java 4.10

buffer, then the new sub-buffer is extended with NULL bytes, but the original buffer is
not altered. The .unicode and .bigEndian flags are duplicated in the new buffer. The size
of the new buffer is set to the beginning and end parameters. If the cursor in the old
buffer is between beginning and end, then it is converted to a new relative position in the
new buffer. If the cursor was before beginning, then it is set to 0 in the new buffer, and if
it was past end, then it is set to the end of the new buffer.

Buffer[offset]
This is an array-like version of the .getValue()/.putValue() methods which works only
with bytes. A user may either get or set these values, such as "goo = foo[5];" or "foo[5] =
goo;". Every get/put operation uses byte types, that is, SWORD8. If offset is less than 0,
then 0 is used. If offset is beyond the end of a buffer, the size of the buffer is extended
with NULL bytes to accommodate it.

The Date Object
ScriptEase shines in its ability to work with dates and provides two different systems for
working with them. One is the standard Date object of JavaScript and the other is part of
the Clib object which implements powerful routines from C. Two methods,
Date.fromSystem() and .toSystem(), convert dates in the format of one system to the
format of the other. The standard JavaScript Date object is described in this section.
To create a Date object which is set to the current date and time, use the new operator, as
you would with any object.

 var currentDate = new Date();

There are several ways to create a Date object that is set to a date and time. The following
lines all demonstrate ways to get and set dates and times.

 var aDate = new Date(milliseconds);
 var bDate = new Date(datestring);
 var cDate = new Date(year, month, day);
 var dDate = new Date(year, month, day, hours, minutes, seconds);

The first syntax returns a date and time represented by the number of milliseconds since
midnight, January 1, 1970. This representation by milliseconds is a standard way of
representing dates and times that makes it easy to calculate the amount of time between
one date and another. Generally, you do not create dates in this way. Instead, you convert
them to milliseconds format before doing calculations.
The second syntax accepts a string representing a date and optional time. The format of
such contains one or more of the following fields, in any order:

 month day, year hours:minutes:seconds

Language Objects & Libraries 155

For example, the following string:

 "Friday 13, 1995 13:13:15"

specifies the date, Friday 13, 1995, and the time, one thirteen and 15 seconds PM, which,
expressed in 24 hour time, is 13:13 hours and 15 seconds. The time specification is
optional and if included, the seconds specification is optional.
The third and fourth syntaxes are self-explanatory. All parameters passed to them are
integers.

year If a year is in the twentieth century, the 1900s, you need
only supply the final two digits. Otherwise four digits must
be supplied.

month A month is specified as a number from 0 to 11. January is
0, and December is 11.

day A day of the month is specified as a number from 1 to 31.
The first day of a month is 1 and the last is 28, 29, 30, or
31.

hours An hour is specified as a number from 0 to 23. Midnight is
0, and 11 PM is 23.

minutes A minute is specified as a number from 0 to 59. The first
minute of an hour is 0, and the last is 59.

seconds A second is specified as a number from 0 to 59. The first
second of a minute is 0, and the last is 59.

For example, the following line of code:

 var aDate = new Date(1492, 9, 12)

creates a Date object containing the date, October 12, 1492.
The following is a brief description of the methods of the Date object. Instance methods
are shown with a period, ".", at their beginnings. A specific instance of a variable should
be put in front of the period to call a method.
For example, the Date object aDate was created above, and, to call the .getDate() method,
the call would be: aDate.getDate(). Static methods have "Date." at their beginnings, since
these methods are called with a literal call, such as Date.parse(). These methods are part
of the Date object itself instead of instances of the Date object.

Instance Date methods
.getDate()
This method returns the day of the month, as a number from 1 to 31, of a Date object.
The first day of a month is 1, and the last is 28, 29, 30, or 31.

.getDay()

156 ScriptEase:ISDK/Java 4.10

This method returns the day of the week, as a number from 0 to 6, of a Date object.
Sunday is 0, and Saturday is 6.

.getFullYear()
This method returns the year, as a number with four digits, of a Date object.

.getHours()
This method returns the hour, as a number from 0 to 23, of a Date object. Midnight is 0,
and 11 PM is 23.

.getMilliseconds()
This method returns the millisecond, as a number from 0 to 999, of a Date object. The
first millisecond in a second is 0, and the last is 999.

.getMinutes()
This method returns the minute, as a number from 0 to 59, of a Date object. The first
minute of an hour is 0, and the last is 59.

.getMonth()
This method returns the month, as a number from 0 to 11, of a Date object. January is 0,
and December is 11.

.getSeconds()
This method returns the second, as number from 0 to 59, of a Date object. The first
second of a minute is 0, and the last is 59.

.getTime()
This method returns the milliseconds representation of a Date object, in the form of an
integer representing the number of seconds from midnight on January 1, 1970, GMT, to
the date and time specified by a Date object.

.getTimezoneOffset()
This method returns the difference, in minutes, between Greenwich Mean Time (GMT)
and local time.

.getUTCDate()
This method returns the UTC day of the month, as a number from 1 to 31, of a Date
object. The first day of a month is 1, and the last is 28, 29, 30, or 31.

.getUTCDay()
This method returns the UTC day of the week, as a number from 0 to 6, of a Date object.
Sunday is 0, and Saturday is 6.

.getUTCFullYear()
This method returns the UTC year, as a number with four digits, of a Date object.

.getUTCHours()
This method returns the UTC hour, as a number from 0 to 23, of a Date object. Midnight
is 0, and 11 PM is 23.

.getUTCMilliseconds()
This method returns the UTC millisecond, as a number from 0 to 999, of a Date object.

Language Objects & Libraries 157

The first millisecond in a second is 0, and the last is 999.

.getUTCMinutes()
This method returns the UTC minute, as a number from 0 to 59, of a Date object. The
first minute of an hour is 0, and the last is 59.

.getUTCMonth()
This method returns the UTC month, as a number from 0 to 11, of a Date object. January
is 0, and December is 11.

.getUTCSeconds()
This method returns the UTC second, as number from 0 to 59, of a Date object. The first
second of a minute is 0, and the last is 59.

.getYear()
This method returns the year, as a number with two digits, of a Date object.

.setDate(DayOfMonth)
This method sets the day, as a number from 1 to 31, of a Date object to the parameter
DayOfMonth. The first day of a month is 1, and the last is 28, 29, 30, or 31.

.setFullYear(year[, month[, date]])
This method sets the year of a Date object to the parameter year. The parameter year is
expressed with four digits.
If the parameter month is passed, use data format for .setMonth().
If the parameter date is passed, use data format for .setDate().

.setHours(hour[, minute[, second[, millisecond]]])
This method sets the hour, as a number from 0 to 23, of a Date object to the parameter
hours. Midnight is 0, and 11 PM is 23.
If the parameter minute is passed, use data format for .setMinutes().
If the parameter second is passed, use data format for .setSeconds().
If the parameter millisecond is passed, use data format for .setMilliseconds().

.setMilliseconds(millisecond)
This method sets the millisecond, as a number from 0 to 59, of a Date object to the
parameter millisecond. The first millisecond in a second is 0, and the last is 999.

.setMinutes(minute[, second[, millisecond]])
This method sets the minute, as a number from 0 to 59, of a Date object to the parameter
minute. The first minute of an hour is 0, and the last is 59.
If the parameter second is passed, use data format for .setSeconds().
If the parameter millisecond is passed, use data format for .setMilliseconds().

.setMonth(month[, date])
This method sets the month, as a number from 0 to 11, of a Date object to the parameter
month. January is 0, and December is 11.
If the parameter date is passed, use data format for .setDate().

.setSeconds(second[, millisecond])
This method sets the second, as a number from 0 to 59, of a Date object to the parameter

158 ScriptEase:ISDK/Java 4.10

second. The first second of a minute is 0, and the last is 59.
If the parameter millisecond is passed, use data format for .setMilliseconds().

.setTime(milliseconds)
This method sets a Date object to the date and time specified by the parameter
milliseconds which is the number of milliseconds from midnight on January 1, 1970,
GMT.

.setUTCDate(DayOfMonth)
This method sets the UTC day, as a number from 1 to 31, of a Date object to the
parameter DayOfMonth. The first day of a month is 1, and the last is 28, 29, 30, or 31.

.setUTCFullYear(year[, month[, date]])
This method sets the UTC year of a Date object to the parameter year. The parameter
year is expressed with four digits.
If the parameter month is passed, use data format for .setUTCMonth().
If the parameter date is passed, use data format for .setUTCDate().

.setUTCHours(hour[, minute[, second[, millisecond]]])
This method sets the UTC hour, as a number from 0 to 23, of a Date object to the
parameter hours. Midnight is 0, and 11 PM is 23.
If the parameter minute is passed, use data format for .setUTCMinutes().
If the parameter second is passed, use data format for .setUTCSeconds().
If the parameter millisecond is passed, use data format for .setUTCMilliseconds().

.setUTCMilliseconds(millisecond)
This method sets the UTC millisecond, as a number from 0 to 59, of a Date object to the
parameter millisecond. The first millisecond in a second is 0, and the last is 999.

.setUTCMinutes(minute[, second[, millisecond]])
This method sets the UTC minute, as a number from 0 to 59, of a Date object to the
parameter minute. The first minute of an hour is 0, and the last is 59.
If the parameter second is passed, use data format for .setUTCSeconds().
If the parameter millisecond is passed, use data format for .setUTCMilliseconds().

.setUTCMonth(month[, date])
This method sets the UTC month, as a number from 0 to 11, of a Date object to the
parameter month. January is 0, and December is 11.
If the parameter date is passed, use data format for .setUTCDate().

.setUTCSeconds(second[, millisecond]])
This method sets the UTC second, as a number from 0 to 59, of a Date object to the
parameter second. The first second of a minute is 0, and the last is 59.
If the parameter millisecond is passed, use data format for .setUTCMilliseconds().

.setYear(year)
This method sets the year of a Date object to the parameter year. The parameter year may
be expressed with two digits for a year in the twentieth century, the 1900s. Four digits are
necessary for any other century.

Language Objects & Libraries 159

.toGMTString()
This method converts a Date object to a string, based on Greenwich Mean Time.

.toLocaleString()
This method returns a string representing the date and time of a Date object based on the
time zone of the user.

.toSystem()
This method converts a Date object to a system time format which is the same as that
returned by the Clib.time() method. To create a Date object from a variable in system
time format, see the Date.fromSystem() method.

.toUTCString()
This method returns a string that represents the UTC date in a convenient and
human-readable form.

Static Date methods
The Date object has three special methods that are called from the object itself, rather
than from an instance of it: Date.fromSystem(), Date.parse(), and Date.UTC().

Date.fromSystem(time)
This method converts the parameter time, which is in the same format as returned by the
Clib.time(), to a standard JavaScript Date object. To create a Date object from date
information obtained using Clib, use code similar to:

 var SysDate = Clib.time();
 var ObjDate = Date.fromSystem(SysDate);

To convert a Date object to system format that can be used by the methods of the Clib
object, use code similar to:

 var SysDate = ObjDate.toSystem();

Date.parse(datestring)
This method converts the string datestring to a Date object. The string must be in the
following format:

 Friday, October 31, 1998 15:30:00 -0500

This format is used by the .toGMTString() method and by email and Internet
applications. The day of the week, time zone, time specification or seconds field may be
omitted.

 var theDate = Date.parse(datestring);

is equivalent to:

160 ScriptEase:ISDK/Java 4.10

 var theDate = new Date(datestring);

Date.UTC(year, month, day, [, hours [,minutes [,seconds]]])
This method interprets its parameters as a date and returns the number of milliseconds
from midnight, January 1, 1970, to the date and time specified. The parameters are
interpreted as referring to Greenwich Mean Time (GMT).

The Math Object
The Math object in ScriptEase has a full and powerful set of methods and properties for
mathematical operations. A programmer has a rich set of mathematical tools for the task
of doing mathematical calculations in a script.

Properties
Math.E
The number value for e, the base of natural logarithms. This value is represented
internally as approximately 2.7182818284590452354.

Math.LN10
The number value for the natural logarithm of 10. This value is represented internally as
approximately 2.302585092994046.

Math.LN2
The number value for the natural logarithm of 2. This value is represented internally as
approximately 0.6931471805599453.

Math.LOG2E
The number value for the base 2 logarithm of e, the base of the natural logarithms. This
value is represented internally as approximately 1.4426950408889634. The value of
Math.LOG2E is approximately the reciprocal of the value of Math.LN2.

Math.LOG10E
The number value for the base 10 logarithm of e, the base of the natural logarithms. This
value is represented internally as approximately 0.4342944819032518. The value of
Math.LOG10E is approximately the reciprocal of the value of Math.LN10.

Math.PI
The number value for pi, the ratio of the circumference of a circle to its diameter. This
value is represented internally as approximately 3.14159265358979323846.

Math.SQRT1_2
The number value for the square root of 2, which is represented internally as
approximately 0.7071067811865476. The value of Math.SQRT1_2 is approximately the
reciprocal of the value of Math.SQRT2.

Math.SQRT2

Language Objects & Libraries 161

The number value for the square root of 2, which is represented internally as
approximately 1.4142135623730951.

Methods
Math.abs(x)
Returns the absolute value of x. Returns NaN if x cannot be converted to a number.

Math.acos(x)
Returns the arc cosine of x. The return value is expressed in radians and ranges from 0 to
pi. Returns NaN if x cannot be converted to a number, is greater than 1, or is less than -1.

Math.asin(x)
Returns an implementation-dependent approximation of the arc sine of the argument. The
return value is expressed in radians and ranges from -pi/2 to +pi/2. Returns NaN if x
cannot be converted to a number, is greater than 1, or less than -1.

Math.atan(x)
Returns an implementation-dependent approximation of the arc tangent of the argument.
The return value is expressed in radians and ranges from -pi/2 to +pi/2.

Math.atan2(x, y)
Returns an implementation-dependent approximation to the arc tangent of the quotient,
y/x, of the arguments y and x, where the signs of the arguments are used to determine the
quadrant of the result. It is intentional and traditional for the two-argument arc tangent
function that the argument named y be first and the argument named x be second. The
return value is expressed in radians and ranges from -pi to +pi.

Math.ceil(x)
Returns the smallest number that is not less than the argument and is equal to a
mathematical integer. If the argument is already an integer, the result is the argument
itself. Returns NaN if x cannot be converted to a number.

Math.cos(x)
Returns an implementation-dependent approximation of the cosine of the argument. The
argument is expressed in radians. Returns NaN if x cannot be converted to a number.

Math.exp(x)
Returns an implementation-dependent approximation of the exponential function of the
argument, that is, returns e raised to the power of the x, where e is the base of the natural
logarithms. Returns NaN if x cannot be converted to a number.

Math.floor(x)
Returns the greatest number value that is not greater than the argument and is equal to a
mathematical integer. If the argument is already an integer, the return value is the
argument itself.

Math.log(x)
Returns an implementation-dependent approximation of the natural logarithm of x.

162 ScriptEase:ISDK/Java 4.10

Math.max(x, y)
Returns the larger of x and y. Returns NaN if either argument cannot be converted to a
number.

Math.min(x, y)
Returns the smaller of x and y. Returns NaN if either argument cannot be converted to a
number.

Math.pow(x, y)
Returns the value of x to the power of y.

Math.random()
Returns a number which is positive and pseudo-random and which is greater than or
equal to 0 but less than 1. This method takes no arguments.

Math.round(x)
Returns the number value that is closest to the argument and is equal to a mathematical
integer. x is rounded up if its fractional part is equal to or greater than 0.5 and is rounded
down if less than 0.5.

Math.sin(x)
Returns the sine of x, expressed in radians. Returns NaN if x cannot be converted to a
number.

Math.sqrt(x)
Returns the square root of x. Returns NaN if x is a negative number or cannot be
converted to a number.

Math.tan(x)
Returns the tangent of x, expressed in radians. Returns NaN if x cannot be converted to a
number.

The String Hybrid
The String data type is a hybrid that shares characteristics of primitive data types,
Boolean and Number, and of composite data types, Object and Array. The String is
presented in this section under two main headings in which the first describes its
characteristics as a primitive data type and the second describes its characteristics as an
object.

The String as data type
A string is an ordered series of characters. The most common use for strings is to
represent text. To indicate that text is a string, it is enclosed in quotation marks. For
example, the first statement below puts the string "hello" into the variable word. The
second sets the variable word to have the same value as a previous variable hello:

 var word = "hello";

Language Objects & Libraries 163

 word = hello;

Escape sequences for characters
Some characters, such as a quotation mark, have special meaning to the interpreter and
must be indicated with special character combinations when used in strings. This allows
the interpreter to distinguish between a quotation mark that is part of a string and a
quotation mark that indicates the end of the string.

The table below lists the characters indicated by escape sequences:
\a Audible bell
\b Backspace
\f Formfeed
\n Newline
\r Carriage return
\t Tab
\v Vertical tab
\' Single quote
\" Double quote
\\ Backslash character
\0### Octal number (example: '\033' is the escape character)
\x## Hex number (example: '\x1B' is the escape character)
\0 NULL character (example: '\0' is the NULL character)
\u#### Unicode number (example: '\u001B' is the escape character)

Note that these escape sequences cannot be used within strings enclosed by back quotes,
which are explained below.

Single quote strings
You can declare a string with single quotes instead of double quotes. There is no
difference between the two in JavaScript, except that double quote strings are used less
commonly by many scripters. In functions declared with the cfunction keyword, the
difference is more important. For more information, see the section on cfunction.

Back quote strings
ScriptEase provides the back quote "`", also known as the back-tick or grave accent, as an
alternative quote character to indicate that escape sequences are not to be translated. Any
special characters represented with a backslash followed by a letter, such as "\n", cannot
be used in back tick strings.
For example, the following lines show different ways to describe a single file name:

 "c:\\autoexec.bat" // traditional C method
 'c:\\autoexec.bat' // traditional C method
 'c:\autoexec.bat' // alternative ScriptEase method

164 ScriptEase:ISDK/Java 4.10

Back quote strings are not supported in most versions of JavaScript. So if you are
planning to port your script to some other JavaScript interpreter, you should not use them.

Long Strings: Using + to concatenate or join strings
You can use the + operator to concatenate strings. The following line:

 var proverb = "A rolling stone " + "gathers no moss."

creates the variable proverb and assigns it the string "A rolling stone gathers no moss." If
you try to concatenate a string with a number, the number is converted to a string.

 var newstring = 4 + "get it";

This bit of code creates newstring as a string variable and assigns it the string "4get it".
The use of the + operator is the standard way of creating long strings in JavaScript. In
ScriptEase, the + operator is optional. For example, the following:

 var badJoke = "I was standing in front of an Italian "
 "restaurant waiting to get in when this guy "
 "came up and asked me, \"Why did the "
 "Italians lose the war?\" I told him I had "
 "no idea. \"Because they ordered ziti"
 "instead of shells,\" he replied."

creates a long string containing the entire bad joke.

The String as object
Strings have both properties and methods which are listed in this section. These
properties and methods are discussed as if strings were pure objects. Strings have
instance properties and methods and are shown with a period, ".", at their beginnings. A
specific instance of a variable should be put in front of a period to use a property or call a
method. The exception to this usage is a static method which actually uses the identifier
String, instead of a variable created as an instance of String. The following code fragment
shows how to access the .length property, as an example for calling a String property or
method:.

 var TestStr = "123";
 var TestLen = TestStr.length;

String properties
.length
The length of a string can be obtained by using the length property. For example:

Language Objects & Libraries 165

 var string = "No, thank you.";
 Screen.write(string.length);

displays the number 14, the number of characters in the string.

String instance methods
.charAt()
This method returns a character at a certain place in a string. To get the first character in a
string, use index 0, as follows:

 var string = "a string";
 string.charAt(0);

To get the last character in a string, use:

 string.charAt(string.length - 1);

.charCodeAt(index)
This method returns a number representing the unicode value of the character at position
index of a string. Returns NaN if there is no character at the position.
.indexOf(substring [, offset])
This method returns the index of the first appearance of a substring in a string. For
example:

 var string = "what a string";
 string.indexOf("a")

returns the position, which is 2 in this example, of the first "a" appearing in the string.
The method .indexOf() may take an optional second parameter which is an integer
indicating the index into a string where the method starts searching the string.
For example:

 var magicWord = "abracadabra";
 var secondA = magicWord.indexOf("a", 1);

returns 3, the index of the first "a" to be found in the string when starting from the second
letter of the string. Since the index of the first character is 0, the index of second
character is 1.
.lastIndexOf(substring [, offset])
This method is similar to .indexOf(), except that it finds the last occurrence of a character
in a string instead of the first.
.split([substring])
This method splits a string into an Array of strings based on the delimiters in the

166 ScriptEase:ISDK/Java 4.10

parameter substring. The parameter substring is optional and if supplied, determines
where the string is split. If no delimiters are specified, the method returns an Array with
one element which is the original string.

For example, to create an Array of all of the words in a sentence, use code similar to the
following fragment:

 var sentence = "I am not a crook";
 var wordArray = sentence.split(' ');

.substring()
This method retrieves a section of a string. For example, to get the first ten characters in
string, use something like the following code fragment:

 var string = "a string with many words in it";
 var substring = string.substring(0, 10);

.toLowerCase()
.toUpperCase()
These two methods change the case of a string. .toLowerCase() returns a copy of a string
with all of the letters changed to lower case. .toUpperCase() returns a copy of a string
with all of the letters changed to upper case.

String static methods
String.fromCharCode(char1, char2...)
This method returns a string created from the character codes that are passed to it as
parameters. The identifier String is used with this static method, instead of a variable
name as with instance methods. The arguments passed to this method are assumed to be
unicode characters. The following line:

 var string = String.fromCharCode(0x0041,0x0042)

set the variable string to be "AB".

Using the Debugger 167

Using the Integrated Debugger

ScriptEase comes with a source debugger that provides a complete Integrated Debugging
Environment, which means you can edit a script while you are debugging it.

The debugger is a Windows application with a standard Multiple Document Interface
(MDI) like many other applications. The image above has four windows showing: the
script, Watches, Locals, and the Globals window. The specifics about windows are
explained later. The script window is explained in the section about the File menu
options, and the other three in the section about the window menu options. For now, just
understand that the tiled arrangement shown above is just one out of many ways to
display windows in the debugger. You may have multiple script window or only one.
You may have only one window showing or any combination of windows. Like any MDI
application, you may maximize, minimize, tile, and cascade windows. In short, the user
interface of the ScriptEase debugger is a standard windows interface.

ScriptEase debuggers are available only for Windows operating environments. There
are debuggers for Windows 95/98, Windows NT, and Windows 3.x.

Using the ScriptEase Debugger
The ScriptEase debugger is a source code debugger, which means that you may debug
programs while watching the execution of a program line by line in the original source
code. You may set breakpoints, trace lines of code as they execute, step into and over
functions, watch variables that you choose, keep up with global and local variables, and
other powerful options that you expect in a good source code debugger.

168 ScriptEase:ISDK/Java 4.10

The main window of the ScriptEase debugger consists of the following components,
listed in top to bottom order.

Components of main MDI window
Menu bar
All commands in the ScriptEase debugger may be accessed through menus. The menu
bar is described completely in the following section, "Main menu bar."

Tool bar
The toolbar has buttons for the common and useful debugger commands. Instead of
clicking menus, you may click a button on the toolbar as a shortcut. The commands that
are available on the toolbar are exactly the same as the corresponding commands in
menus. In the section, "Main menu bar," commands that are available on the toolbar are
indicated by the notation: "In toolbar."

Document window
The document window is a standard Windows Multiple Document Interface (MDI)
window. You may open four kinds of windows within the document window: Source,
Watches, Locals, and Globals.

Status bar
The status bar at the bottom of the window provides useful information concerning the
currently active window. The current cursor position in a script window is displayed as
line and column numbers. The status of the Caps, Num, and Scroll lock keys is displayed.
When the mouse cursor is over menu and toolbar items, help or hint information displays
in the status bar. The general state of the IDE is also displayed, such as "Ready" or
"Program Terminated."

Using the Debugger 169

MDI windows
Source
Source windows may be called script windows since they display the source code of a
script file. These script windows are actually text editing windows in which scripts may
be viewed, edited, or used for source line debugging.

When used for editing, the editor is capable of writing an entire script, but the editing
features of a script window are basic and adequate for simple scripts. Normally, you will
use a more powerful editor for most writing and editing of sophisticated scripts, an editor
such as the ScriptEase Editor that accompanies ScriptEase products. The ScriptEase
Editor has features that allow you to coordinate your work effectively with the ScriptEase
debugger. Currently, when you change text in a script while it is still loaded in a script
window in the debugger, you must manually reload the file in the debugger. However,
when you make changes in a script while in a script window, the ScriptEase Editor can
automatically detect the changes and reload the file. Thus, for most editing of scripts use
the ScriptEase Editor for major writing and script windows in the debugger for minor
changes while debugging a script.

The current position in a source file is indicated by a special marker, icon, that can be
chosen from several options. In addition, breakpoints may be set in a script window.
Breakpoints display as small red hexagons at the beginning of the lines of scripts to
which they apply.

You may open multiple script windows at the same time. Remember, that various
debugging commands apply to the currently active script window. For example, a
command such as "Debug | Run in Debugger" runs the script in the currently active
source window, not any other scripts that might be open in source windows.

Source windows have gray backgrounds when in debugging, as opposed to editing,
mode. You may not edit scripts while in debugging mode. When script windows have
gray backgrounds, remember that you may only use debugging commands, such as
"Debug | Step Into."

Globals
The Globals window displays all global variables that are available to the point in a
script. The source marker indicates in a script where execution is currently occurring. The
information for each variable displayed is the variable name, type, and value.

170 ScriptEase:ISDK/Java 4.10

Locals
The Locals window displays all local variables that are available at the point in a script
where execution is occurring. The source marker indicates in a script where execution is
currently occurring. The variables in a local window constantly change as functions that
have local variables are entered and debugged. The information for each variable
displayed is the variable name, type, and value.

Watches
The Watches window is a place where you can view variables and expressions that you
want to see. You may put plain variables here, and when they are active, these variables
will show as in other windows. In addition you may set variables to be watched and used
as breakpoints. You may set execution to break if a variable changes or is equal to true or
false. But the watch window may be used with more than just variables, it may be used
with expressions. For example,

the following code:
 var arr = Array(false,1, 2, 3, "four");

creates an array with four elements. In the Locals and Globals windows, the array arr is
shown as type object with no value shown.

You might want to keep up with one or more elements in the array. To keep up with the
second element in the array arr, set a watch for arr[1] and it will appear as an
expression to be watched with its format type and value, which in this case is 1. Perhaps
you want to keep up with the addition or concatenation of the fourth and fifth elements. If
so, set a watch or arr[3] + arr[4], which in this case would display a value of
"four3".

In fact, the watch window is designed to watch expressions rather than variables. When a
variable by itself is watched, the debugger simply considers it to be an expression. Notice
that the second column in the watch window provides format information instead of the
type of a variable.

Using the Debugger 171

Setting watches
The Watch dialog, Figure 2, is the main window used to set watch information.

Add
The Add button adds the current expression, in the Expression edit box, to the list of
expressions to be watched in the Watches window.

Remove
The Remove button removes the expression which is currently highlighted in the list of
expressions to be watched.

Remove All
The Remove All button removes all expressions to be watched.

Expression
The Expression edit box allows entry of expressions and variables to be watched in the
Watches window.

172 ScriptEase:ISDK/Java 4.10

Format String
The Format String edit box allows some control over the format of expression, that is,
how an expression value will appear.

Break when Expression
The four options in this group allow watches to serve as conditional breakpoints. To
simply watch an expression or variable, set [No Break], which is the default. Set Changes
if you want program execution to pause when the expression or variable changes value.
Set True or False if you want program execution to pause when an expression becomes
true or false. You may use "Debug | Change Variables..." to set a variable to a different
value and watch execution with the changed variable.

Setting breakpoints
The Breakpoint dialog, Figure 3, is the main window used to set breakpoints.

Add
The Add button adds a breakpoint at the line specified, in the Line Number edit box, to

Using the Debugger 173

the script specified in the File Name edit box. Of course, the script itself is not altered
since scripts are plain text files. Breakpoints are retained as settings within the ScriptEase
debugger.

Remove
The Remove button removes the breakpoint which is currently highlighted in the
Breakpoints list box.

File Name
The File Name edit box indicates which script is presently being used for add and remove
operations

Line Number
The Line Number edit box indicates which line in a script is affected by add and remove
operations

Breakpoints
The Breakpoints list box shows all breakpoints currently active in a script.

Main menu bar
The main menu bar consists of the seven menus across the top of the windows just below
the title of bar. The seven menus are: File, Edit, View, Search, Debug, Window, and
Help. Some menu commands may be accessed from the toolbar or by shortcut keys, and
those that can are indicated by the notations: "In toolbar" and a keystroke description.

File menu
The file menu has options for starting, opening, closing, saving, and printing script files.
Plus, an exit option to exit the debugger. All of the commands concerning files operate on
script or source files. These files are opened in the integrated editor which allows the use
of all debugging options in the integrated debugger. The editor is also a standard editor
that can be used to do plain text editing in any text file, such as one created by Notepad.

The editor can be used to write complete scripts. Normally, however, scripters use their
favored editors to write and edit most scripts and use the integrated editor while
debugging a script.

174 ScriptEase:ISDK/Java 4.10

New In toolbar and Ctrl+N
Start a new script or source file. The file is opened in the editor which is integrated with
all debugging features.

Open... In toolbar and Ctrl+O
Open dialog to open a script file.

Close Ctrl+W
Close the currently active script file.

Save In toolbar and Ctrl+S
Save the currently active script file.

Save As...
Save the currently active script file to a new filename. The title of the currently active
script will change to the new filename. Immediately after a script is saved to a new
filename, the script will exist in two separate files with the old and new filenames. But,
the new filename will be the active script. To edit the previous file, it must be opened
again.

Print... In toolbar and Ctrl+P
Print the currently active script file using straightforward print settings. The print dialog
that opens is a standard Windows print dialog.

Print Preview
Preview how the printed script file will look before actually printing the file. When
previewing a page, there are various options to page through the pre-printed document,
examine pages one or two at a time, zoom in and out, print the document, or close the
preview window without printing.

Print Setup...
Change printer settings. These settings are for the printer and are not a page setup. The
print setup dialog that opens is a standard Windows print dialog.

(Recent files list)
List up to four of the most recent script files that have been opened in the editor.

Exit
Exit the entire ScriptEase debugger program. Some settings, such as the size and location
of open windows is saved. Thus, when the ScriptEase debugger is started again, it is
easier to restore various windows to their previous state.

Edit menu
Undo Ctrl+Z

Using the Debugger 175

Undo the last editor operation in the script window.

Cut In toolbar and Ctrl+X
Cut selected text from the script window.

Copy In toolbar and Ctrl+C
Copy selected text from the script window.

Paste In toolbar and Ctrl+V
Paste text at the insertion point, where the cursor is, or into the selection in the script
window.

Options
Font...
Display a dialog to set the style, size, and color of the font used in the debugger windows.
Tabs...
Set how many spaces should be used when displaying a tab character in the debugger
windows.
Trace On
When a script is run using the Debug | Run in Debugger menu item, the active script runs
until it encounters a breakpoint or the script ends. If the Edit | Options | Trace On option
is checked, then when a script is run in the debugger, the lines executed are traced. The
source marker visibly moves from source line to source line as the script is run. The
effect is similar to choosing the Debug | Step Into and Step Over menu items. The
difference is that with Trace On checked, the stepping is done automatically.
Trace Speed
When the Trace On menu item is checked, the Trace Speed options determine how fast
the trace operation executes each line of a script. The options are: Fast, Normal, Slow,
and Slowest.
Trace over
When the Trace On menu item is checked, the Trace Over menu item determines if the
tracing steps over functions that are called or steps into them. When Trace Over is
checked, the tracer steps over functions, and when it is not checked, the tracer steps into
functions.
Source Mark
When debugging a script, the current position in a script is visibly marked by an icon or
graphic. The Source Mark option allows a choice of the appearance of the marker.
Default Interpreter...
The default interpreter is the ScriptEase executable that the debugger uses when
executing a script. In Win32, the two valid programs are SEwin32.exe and SEcon32.exe.
There are differences between a windowed application and a console application. You
may want to set the default interpreter to be the same interpreter that you will use to
execute a script.

176 ScriptEase:ISDK/Java 4.10

View menu
Toolbar
View the push button toolbar, just below the menu bar, if checked.

Status Bar
View the status bar at the bottom of the debugger window. The status bar displays
various helpful messages and the position of the cursor or insertion point in the editor in
terms of line and column.

Search menu
Find... Ctrl+F
Find text in the script window using a find dialog.

Replace... Ctrl+R
Find text in the script window and replace it with other text using a find and replace
dialog.

Using the Debugger 177

Debug menu
Start Debug Session
Start executing the active script in a debug session. The source marker is positioned at the
first executable line in the script awaiting further commands.

Restart
Restart a debugging session. The source marker is positioned at the first executable line
in the script awaiting further commands.

Run in Debugger In toolbar and F5
Run the current script in the debugger. The source mark appears. The script executes until
a break point is reached or the script is finished.

Go Ctrl+F5
Execute the current script as a program, that is, not in the debugger.

Stop In toolbar
Stop the execution of a script that is running in the debugger. The script may be actively
executing or paused at a source line or breakpoint.

Step Into In toolbar and F9
Steps into any user defined functions in the current source line and begins displaying
source lines in the function as they are executed. Does not step into built in functions. If a
script has not begun execution in the debugger, then the first line of executable code is
executed.

Step Over In toolbar and F10
Steps over any user defined functions in the current source line and simply executes the
line and pauses at the next line in the current script. If a script has not begun execution in
the debugger, then the first line of executable code is executed.

Step to Cursor In toolbar and F11
Executes all lines of executable code till reaching the line where the cursor is located. In
effect, the cursor behaves like a temporary breakpoint.

Step Out In toolbar and F12
Executes lines of code in the current function until the function is finished.

Parameters...
Opens a dialog box to set command line parameters to be sent to a script when it is
executed in the debugger. The parameters are handled by a script in the same way as they
are when part of a command line.

Breakpoint

178 ScriptEase:ISDK/Java 4.10

Toggle current In toolbar and F8
Toggle the breakpoint at the current line, off or on.
Add/Remove...
Opens a dialog box to add or remove breakpoints on any line in the current script.
Remove all In toolbar
Removes all breakpoints in the current script.

Watch
Add/Remove... In toolbar
Opens a dialog box for adding variables and expressions to the watch window or
removing them.
Remove all In toolbar
Remove all watches from the current script and debugging session.

Change Variables
The menu item allows a variable to be changed while a script is executing.

Window menu
Cascade
Display the open windows in the debugger in a cascaded fashion.

Tile
Tile open windows horizontally. If two or three windows are open, they are all tiled
horizontally extending the entire width of the main debugger window. If four or more
windows are open, then two columns of windows are begun, and all windows are tiled
horizontally in the two columns. For example, if a script window, the global, the local,
and the watch window are opened, the resulting window is quartered. Each window will
be in the four corners of the main window. The screen shot, Figure 1, at the beginning of
this section is an example of four tiled windows.

Arrange Icons
As in all MDI applications, open windows may be minimized inside the main window.
The Arrange Icons menu item arranges these minimized icons at the bottom of the main
debugger window.

Global... Ctrl+Shft+G
Open the Globals window to view global variables while debugging a script.

Local... Ctrl+Shft+L
Open the Locals window to view local variables while debugging a script.

Watch... Ctrl+Shft+W
Open the Watches window to view variables and expressions that have been defined by a

Using the Debugger 179

user.

 (Open windows list)
A list of the currently open windows in the debugger.

Help menu
Help Topics... F1
Display a help file for the debugger.

About ScriptEase Debugger... In toolbar
Displays program information, version number, and copyright notice for the debugger.

180 ScriptEase:ISDK/Java 4.10

ScriptEase:ISDK/Java 4.10 181

Index

#define................................... 135
#else 137
#if .. 137
#include................................. 136
#link 138
arrays in SE JavaScript 121
Automatic type conversion (in

SE JS)................................ 105
Basics of SE JavaScript 94
blocks in SE JavaScript........... 96
case sensitivity 94
comments in SE JavaScript..... 95
data types

composite (in SE JS)......... 102
in SE JavaScript 100
primitive (in SE JS)........... 101

debugger
menus 173
using.................................. 167

define directive...................... 135
Dynamic objects.................... 128
else directive 137
Exception Handling

via scripts 134
expressions in SE JavaScript .. 96
Flow decisions statements (in SE

JS) 111
function library table............... 17
function wrappers.................... 20
functions.................................. 17

calling.................................. 29
in ScriptEase JavaScript.... 117
variable arguments 28

global object
methods (in SE JS)............ 132
properties (in SE JS) 132

identifiers in SE JavaScript..... 97
prohibited 98

if directive 137
include directive.................... 136
Initializing the ISDK............... 12
inner class methods 24
installing.................................. 11
JseActivationObject 35
jseAddLibrary 36
jseAppExternalLinkRequest ... 37
jseAssign 38
jseBreakpointTest 38
jseCallAtExit........................... 39
jseCallFunction 40
jseCompare 41
jseCompareEquality................ 42
jseCompareLess 42
jseContext 15

adding functions 17
JseContinueFunction............... 12
jseConvert 43
jseCopyBuffer 43
jseCopyString.......................... 44
jseCreateCodeTokenBuffer..... 44
jseCreateConvertedVariable ... 45
jseCreateFunctionTextVariable

... 47
jseCreateLongVariable 48
jseCreateSiblingVariable 49
jseCreateStack......................... 50

182 ScriptEase:ISDK/Java 4.10

jseCreateVariable.................... 50
jseCreateWrapperFunction 51
jseCurrentContext 51
jseCurrentFunctionName 51
jseDeleteMember 52
jseDestroyStack....................... 52
jseDestroyVariable.................. 53
JseErrorHandler 12
jseEvaluateBoolean................. 54
JseExternalLinkParameters..... 14
JseFileLocation 13
jseFindVariable 54
jseFuncVar 55
jseFuncVarCount 55
jseFuncVarNeed...................... 55
jseGetArrayLength.................. 57
jseGetAttributes 58
jseGetBoolean 58
jseGetBuffer 58
jseGetByte............................... 59
jseGetCurrentThisVariable 59
jseGetExternalLinkParameters 59
jseGetFileNameList 60
jseGetFunction 60
jseGetIndexMember................ 61
jseGetIndexMemberEx 61
jseGetJavaObject..................... 61
jseGetLong.............................. 62
jseGetMember......................... 63
jseGetMemberEx 63
jseGetNextMember 64
jseGetString............................. 64
jseGetToolkitApp.................... 62
jseGetType 65
jseGetVariableName............... 65
jseGetWriteableBuffer 65
jseGetWriteableString............. 66

jseGlobalObject....................... 66
jseIndexMember 67
jseIndexMemberEx 67
jseInitializeEngine................... 68
jseInitializeExternalLink......... 68
jseInterpExec........................... 71
jseInterpInit 72
jseInterpret 69
jseInterpret()

common flags...................... 33
interpret script w/ 31

jseInterpTerm.......................... 73
jseIsFunction 73
jseIsLibraryFunction 74
jseLibErrorPrintf 74
jseLibSetErrorFlag.................. 74
jseLibSetExitFlag.................... 75
jseLocateSource 75
jseMember............................... 76
jseMemberEx 77
jseMemberWrapperFunction .. 78
jsePreDefineLong 80
jsePreDefineNumber............... 79
jsePreDefineString 81
jsePreviousContext 82
jsePush 82
jsePutBoolean 83
jsePutBuffer 83
jsePutByte 83
jsePutLong 84
jsePutNumber.......................... 84
jsePutString............................. 85
jsePutStringLength.................. 85
jseQuitFlagged 86
jseReturnLong......................... 87
jseReturnNumber 87
jseReturnVar 88

ScriptEase:ISDK/Java 4.10 183

jseSetArrayLength 90
jseSetAttributes 89
jseSetJavaObject 90
jseTellSecurity 91
jseTerminateEngine 91
jseTerminateExternalLink....... 92
JseToolkitAppIOInterface....... 13
JseVariable

Attribute Flags 23
jseVariables

assigning values 22
creating and destroying....... 30

jseVarNeed.............................. 92
link directive 138
MDI windows 169
objects

dynamic (in SE JS)............ 128
in SE JavaScript 124
working with 27

Operators (in SE JavaScript). 106

overview.................................. 11
Preprocessing 135
Preprocessor Directives 135
Security 16
Setting breakpoints................ 172
Setting watches 171
simple data types

passing and returning 25
passing by reference...... 26, 27

Special values in in SE
JavaScript.......................... 104

statements in SE JavaScript 96
Testing the integration 17
unknown type variables 29
variables in SE JavaScript....... 98

scope 98
Whitespace characters............. 95
wrapper functions

returning values................... 23

