
ScriptEase tm

ISDK for C/C++
v 4.20

Nombas, Inc.

SE ISDK/C 4.20 Manual, 3rd edition

Editor: Bill Ross

© 2000 Nombas Incorporated. All rights reserved. No part of this
manual may be copied without written permission by Nombas
Incorporated. If you would like to request permission to use a Nombas
logo, or any section of this manual, please mail your request to:

Nombas, Inc.
64 Salem Street
Medford, MA 02155
USA

http://www.nombas.com/

All Nombas products are trademarks or registered trademarks of
Nombas Incorporated. Other brand names are trademarks or registered
trademarks or their respective holders. Windows, as used in this
manual, refers to Microsoft's implementation of a windowing system.

ScriptEase ISDK/C - Table of Contents 3

Table of Contents

Introduction 17

What’s New 19

Integrating the ISDK/C 23

Types and Macros of the API 59

API Functions 95

ScriptEase JavaScript Language 153

Integrating Language Objects 199

Preprocessor Options: Compile-Time Flags 209

Integrating the ScriptEase Debugger 231

Security 237

Language Objects & Libraries 245

Distributed Scripting Protocol 325

Using the Integrated Debugger 341

Appendix I 355

Appendix II 364

Introduction 17

SE:ISDK/C Versions and Contents 18

What’s New 19

Quick List 19
Garbage Collection...19
Internationalization...19
MBCS Support ...19
Exception Handling..19
New Operators..19
Reg Exp..19
New ECMAScript functions...20
New #link Objects ..20
New Flag ..20
New Initializer syntax ..21

More on: 21
Multibyte Character Sets ..21
Support For Forthcoming ECMAScript Spec. ...21
More Improvements ...21

Integrating the ISDK/C 23

Unpacking, Installing ScriptEase:ISDK/C 23

Integration overview 24

Required source code and headers 26

JSEOPT.H 26

Example of a JSEOPT.H file 27

Initializing the ISDK/C with your application 27

jseContext 28
Creating a jseContext ...28
Terminating a jseContext ...33
Terminating the interpreter engine ...33
Security code ..33

Testing the integration 34

API error messages 34

ScriptEase ISDK/C - Table of Contents 5

Adding functions to the ScriptEase engine 35
Creating a ScriptEase function library table...35
Initializing a ScriptEase function library table ...37

Writing ScriptEase function wrappers 39
Retrieving function arguments in a wrapper function ..39
Assigning values to jseVariables..41
Returning values from a wrapper function ...42
Passing and returning simple data types...42
Passing simple data types by reference ..44
Working with objects ...45
Functions with a variable number of arguments...46
Accepting a ScriptEase argument of unknown type...47

Calling interpreted ScriptEase functions 48

Creating (and destroying) jseVariables 49

Interpreting a ScriptEase script 49

jseInterpret() - flags 50

jseInterpInit(), jseInterpExec(), and jseInterpTerm() 50
Interpreting in pieces: ...50

Exception Handling Via the API 51
What Is an Error? ...52
Creating Errors Via the API ...53
Catching and Propagating Errors..54

Debugging 55
JSEDEBUG.LOG...55
JSE_TRACKVARS..56
Memory Tracking...56
JSEMEMREPORT...56
JSEAPIOK ...57
Common Mistakes..57

Integrating the debugger with your application 57

Types and Macros of the API 59

jseActionFlags 59

jseApiOK 60

jseAppLinkFunc 61

jseAtErrorFunc 62

jseAtExitFunc 62

jseContext 63

jseConversionTarget 64

jseDataType 65

jseErrorMessageFunc 66

jseExternalLibFunc 66

jseExternalLinkParameters 67

jseFindFileFunc 68

jseFuncAttributes 69

jseFunctionDescription 70

jseGetSourceFunc 73

jseInterpretMethod 74

jseLibFunc 74

jseLibraryFunction 75

jseLibraryInitFunction 75

jseLibraryTermFunction 76

jseLinkOptions 76

jseMayIContinueFunc 78

jseNewContextSettings 79

jsePrintErrorFunc() 80

jseReturnAction 80

jseStack 81

jseToolkitAppSource 81

jseToolkitAppSourceFlags 82

jseVarAttributes 82

jseVariable 83

jseVarNeeded 83

JSE_ATTRIBUTE 85

ScriptEase ISDK/C - Table of Contents 7

JSECALLFUNCTION 85

JSE_ENGINE_VERSION_ID 86

JSE_FUNC_END 87

JSE_LIBOBJECT 87

JSE_LIBMETHOD 88

JSE_PROTOMETH 89

JSE_VARASSIGN 90

JSE_VARSTRING 91

JSE_VARNUMBER 92

JSE_VN_CONVERT 93

JSE_VN_NOT 94

API Functions 95

jseActivationObject 95

jseAddLibrary 95

jseAppExternalLinkRequest 97

jseAssign 97

jseBreakpointTest 98

jseCallAtExit 98

jseCallFunction 99

jseClearApiError 100

jseCompare 100

jseCompareEquality 101

jseCompareLess 101

jseConvert 102

jseCopyBuffer 102

jseCopyString 103

jseCreateCodeTokenBuffer 103

jseCreateConvertedVariable 104

jseCreateFunctionTextVariable 104

jseCreateLongVariable 105

jseCreateSiblingVariable 105

jseCreateStack 106

jseCreateVariable 106

jseCreateWrapperFunction 107

jseCurrentContext 107

jseCurrentFunctionName 108

jseCurrentFunctionVariable 108

jseDeleteMember 109

jseDestroyStack 109

jseDestroyVariable 110

jseEvaluateBoolean 111

jseFindVariable 111

jseFuncVar 112

jseFuncVarCount 112

jseFuncVarNeed 112

jseGarbageCollect 114

jseGetArrayLength 114

jseGetAttributes 115

jseGetBoolean 116

jseGetBuffer 116

jseGetByte 117

jseGetCurrentThisVariable 117

jseGetExternalLinkParameters 117

jseGetFileNameList 118

jseGetFunction 118

jseGetIndexMember 119

ScriptEase ISDK/C - Table of Contents 9

jseGetIndexMemberEx 119

jseGetLastApiError 120

jseGetLinkData 120

jseGetLong 121

jseGetMember 121

jseGetMemberEx 122

jseGetNextMember 123

jseGetNumber 123

jseGetString 124

jseGetType 124

jseGetVariableName 125

jseGetWriteableBuffer 125

jseGetWriteableString 126

jseGlobalObject 126

jseIndexMember 127

jseIndexMemberEx 127

jseInitializeEngine 128

jseInitializeExternalLink 128

jseInterpret 131

jseInterpExec 133

jseInterpInit 133

jseInterpTerm 134

jseIsFunction 134

jseIsLibraryFunction 135

jseLibErrorPrintf 135

jseLibSetErrorFlag 136

jseLibSetExitFlag 136

jseLibraryData 136

JseLocateSource 137

jseMember 137

jseMemberEx 138

jseMemberWrapperFunction 139

jsePreDefineNumber 140

jsePreDefineLong 140

jsePreDefineString 141

jsePreviousContext 142

jsePush 142

jsePutBoolean 143

jsePutBuffer 143

jsePutByte 144

jsePutNumber 144

jsePutLong 144

jsePutString 145

jsePutStringLength 145

jseQuitFlagged 146

jseReturnNumber 147

jseReturnLong 147

jseReturnVar 148

jseSetArrayLength 149

jseSetAttributes 150

JseSetGlobalObject 150

jseTerminateEngine 151

jseTerminateExternalLink 151

jseVarNeed 152

ScriptEase JavaScript Language 153

Basics 154

ScriptEase ISDK/C - Table of Contents 11

Case sensitivity...154
Whitespace characters ..155
Comments...155
Expressions, statements, and blocks...156
Identifiers ...157
Prohibited identifiers ..158
Variables ..158
Variable scope ..158
Functions ..159
Function scope..159

Data types 160
Primitive data types..161
Composite data types..162
Special values...164

Automatic type conversion 165

Properties and methods of basic data types 166
.toString() ...166
.valueOf() ...166

Operators 166
Mathematical operators ..166
Bit operators ...168
Logical operators and conditional expressions...168
typeof operator ...170

Flow decisions statements 171
if ...171
else..171
while...172
do {...} while ..172
for ...173
break...174
continue ..174
switch, case, and default...174
goto and labels..175
Conditional operator ? :..176

Functions 177
Function return statement ...177
Passing variables to functions ..178
Function properties -- arguments[] ...178
Function recursion..179
Error checking for functions...179
The main() function..179

The cfunction keyword...180

Arrays 181
Creating arrays ...182
Methods and properties of arrays ...182

Objects 184
Predefining objects with constructor functions ..184
Methods - assigning functions to objects ...185
Object prototypes ...186
for . . . in ...187
with...187

Dynamic objects 188
._get(property, ExpectCall) ..188
._put(property, value) ...189
._canPut(property) ..189
._hasProperty(property)..189
._delete(property) ...190
._defaultValue(hint) ...190
._construct(. . .)...190
._call(. . .) ...190
._operator(op,operand) ...190

The global object and its properties 192
Properties of the global object..192
Methods of the global object ..192

Exception Handling via Scripts 194

Preprocessing 195
Preprocessor Directives..195

Integrating Language Objects 199

Description and location of the libraries 199

Five Steps to using the libraries within your application 200
Step 1: Add the necessary files to your project ..201
Step 2: Include the necessary files in your jseopt.h file....................................201
Step 3: Define values to include the appropriate functions201
Step 4: Load the libraries within your application..202
Step 5: Add any application services to the context that the libraries may use 202
Example..205
Compiling libraries as link libraries ...206

ScriptEase ISDK/C - Table of Contents 13

Preprocessor Options: Compile-Time Flags 209

Memory Management 223
The Internal Stack ..223
Object Descriptors And Members ..224
Garbage Collection And The Free Lists ...224
String Data..225
Object Destructors..226

MBCS Support In SE 4.20 229
Writing MBCS Compatible Code ..229
ScriptEase API Notes ...230
Speed And Size ..230

Integrating the ScriptEase Debugger 231

Using a Nombas protocol model 231

Defining your own protocol model 231

Code changes to your application 231
Set Options ...232
Add files to your project...232
Update your ToolkitAppData structure and jseopt.h..233
Initialize debugging..233
Call the debugger hook...234
Terminate debugging..235
Example: Modifying your JSEOPT.H file for debugging236

Security 237

Writing a Security Manager 237
jseSecurityInit...238
jseSecurityTerm ...238
jseSecurityGuard ..239
securityVariable ...241

Specifying Security 241

Wrapper Functions And Security 242

Sample Script 243

Language Objects & Libraries 245

ScriptEase Global Functions 245
General ...245

Conversion or casting...248

The Buffer Object 250
Buffer Object Properties...251
Buffer Object Methods...252

The Date Object 254
Instance Date methods..255
Static Date methods..259

The Math Object 260
Properties..260
Methods..261

The String Hybrid 263
The String as data type ...263
The String as object..265

The SElib Object 267
Memory..267
Directories and files..269
Script execution..271
Dynamic links ..278
General ...282

The Clib object 283
Console I/O functions...283
Time functions..288
Script execution..291
Error ...292
File I/O: ..293
Directory...299
Sorting ..299
Environment variables..301
Character classification ..302
String manipulation ..303
Memory manipulation ..310
Math ...311
Variable argument lists...313
Redundant functions in the Clib object ..316

The Blob Object 317
Blob.get() ...317
Blob.put() ...318
Blob.size() ..319

The blobDescriptor Object 320

ScriptEase ISDK/C - Table of Contents 15

DOS / WIN16 321

OS/2 323

Distributed Scripting Protocol 325

I: Adding DSP to Your Application 325
The Distributed Scripting Transport Mechanism ...326
Shared Files ..326
TCP-IP ...327
TCP-IP Server ..327
TCP-IP Client...329

II: Using Distributed Scripting 331
Distributed Scripting Models ...331
Client-Server ..331
Peer-To-Peer Scripting ...332
Using DSP..333
DSP References..333
Working With Objects..334
DSP and The ScriptEase API ...336
Writing Your Own Transport ...336
Security and DSP ...338
THE CHAT EXAMPLE ..339

Using the Integrated Debugger 341

Using the ScriptEase Debugger 341
Components of main MDI window..342
MDI windows...343
Setting watches...345
Setting breakpoints ...346

Main menu bar 347
File menu..347
Edit menu ...348
View menu ...350
Search menu ...350
Debug menu ...351
Window menu ..352
Help menu ..353

Appendix I 355

Aboutopt.jse - jseopt.h analyzer 355
Purpose...355
Configuration File ..355

Usage..356
Understanding the Output ..357

Appendix II 364

Under the Hood 364
Topic 1: What is a jseContext?...364
Topic 2: Errors and Exceptions ..364
Topic 3: Jseinterpret And Scripts, Functions, Variables, And Scoping............366

Introduction to the SE ISDK/C 17

Introduction
To the ScriptEase:Integration SDK/C

The JavaScript interpreter included in this SDK allows you to integrate the JavaScript
language with your application. Your end users will then be able to write macro scripts in
JavaScript to customize your application to their needs. Compact and stable, the
ScriptEase:ISDK/C is easily integrated into your application with straightforward and
intuitive function wrappers and initialization calls.

The basic syntax and commands of JavaScript are determined by the ECMAScript
standards committee. Nombas' JavaScript has several enhancements that are not required
by the ECMAScript standard, but do not interfere with the running of regular JavaScript.
These enhancements include the preprocessor directives #include and #define, the switch
and case statements, and dynamic object handling. Many of these commands are already
familiar to programmers and are expected to be included in future versions of the
JavaScript standard.

The SDK gives you the freedom to control exactly what you want accessible by the
macros. You control how your customers may invoke scripts (e.g., with pull down
menus, commands on a command line, hot keys, function keys, etc.) and what the macro
scripts can do (manipulate data, position windows, interact with other applications,
retrieve input, handle output, e.g.). Virtually anything that can be done with a compiled
language can be done with ScriptEase. The possibilities are limited only by your
imagination.

A number of sample applications come with ScriptEase:Integration SDK. These provide
examples demonstrating how to develop an application with the Software Developer's
Kit. Each sample demonstrates how to integrate the Integration SDK into your
application. Often, within a sample application and between samples, multiple solutions
demonstrate the SDK's versatility. This information is also in this manual, but we know
that sometimes the best way to understand something is to look at working code. We also
provide wrapper functions for all of the standard ECMAScript objects, browser objects
and the standard C library (plus a few additional ones that deal with files, directories and
script execution) as source codes.

18 ScriptEase ISDK/C

SE:ISDK/C Versions and Contents
While the ScriptEase:ISDK/C is available in versions for DOS, OS/2, 16 bit and 32 bit
Windows, Macintosh and various UNIX flavors, other platforms are available and
custom environments may be ordered. The API and programming descriptions in this
manual are valid regardless of which platform you are developing for.
Included with each order are the ScriptEase Standard Library source files and numerous
sample applications. Feel free to use the included library and sample code as examples
for study or include them in your application.

If you have any questions or comments, please contact:
Nombas - ScriptEase:Integration Software Developer's Kit Development Team

E-mail: toolkit_dev@nombas.com
Phone: 781-391-6595
FAX: 781-391-3842

What’s New 19

What’s New
in ScriptEase ISDK/C 4.20

SE 4.20 continues Nombas' commitment to updating and improving our
ScriptEase Integrated System Development Kit.

Quick List
Garbage Collection

• new API call, jseGarbageCollect()
• no cyclic flags
• improved performance

Internationalization
New function - jseGetResourceFunc

MBCS Support
For multibyte character sets (MBCS) other than Unicode.

Exception Handling
• try/catch/throw exception handling
• New Error objects, allowing for the application to be called back at the point an error

was generated.

New Operators
• instanceof operator
• Strict equality (=== and !==)

Reg Exp
Regular Expressions now a standard ECMAScript object.

20 ScriptEase ISDK/C

New ECMAScript functions

• Array.concat
• Array.pop
• Array.push
• Array.slice
• Array.splice
• Array.unshift

• Date.toDateString
• Date.toLocaleDateString
• Date.toLocaleString
• Date.toLocaleTimeString
• Date.toTimeString

• Function.apply
• Function.call

• Object.hasOwnProperty
• Object.isPrototypeOf

• Object.propertyIsEnumerable
• Object.toLocaleString

• String.concat
• String.localeCompare
• String.slice
• String.toLocaleLowerCase
• String.toLocaleUpperCase

• Error
• ConversionError
• EvalError
• RangeError
• ReferenceError
• RegExpError
• SyntaxError
• TypeError

New #link Objects
• Database rewritten

ScriptEase Database Connectivity (SEDBC) is a rewrite of the database access
object. SEDBC is object oriented and much easier to use than the previous ODBC
database object.

Also new is the SimpleDataset object, which provides basic database access and
modification without requiring any knowledge of SQL or database concepts.

• COM object for Windows COM model
Makes the Microsoft COM model look like a JavaScript object.

This code is a good demonstration of how dynamic objects are used to map
JavaScript to other object models.

New Flag
jseOptToBooleanObjectEval has been added to the jseLinkOptions.

According to ECMAScript, ToBoolean() on an object always results in "true". This
new run-time flag allows that behavior to be altered.

What’s New 21

New Initializer syntax
• Object initializers {a:4,b:2}
• Array initializers [1,2,3]

More on:
Multibyte Character Sets

An important addition to SE 4.20 is the support for multibyte character sets (MBCS)
other than Unicode. Several customers have needed this support, and SE420 is being
released primarily to support arbitrary multibyte characters sets. We have also made our
internal strings easier to replace (presumably with a different language,) in order to better
support internationalization.

Support For Forthcoming ECMAScript Spec.
There are other improvements as well. The ECMA committee is nearing completion of
the next ECMAScript specification, and we have added support for a number of
constructs that will appear in it. While several have been part of ScriptEase all along
(such as the switch statement and do/while loop statements), we have added support for
several other constructs. The try/catch/finally error-handling statement is now included,
and errors are encapsulated in ECMA-compatible error objects.

We have updated and improved our array literal format to match the new ECMA
specification, and added support for the object literal. Many new object methods have
been added to the standard ECMA objects (such as String, Number, and Array). We have
changed our regular expression external library to be part of the standard core
distribution, now that it is included in the ECMAScript specification. We will continue to
support the ECMAScript specification as it evolves and is finalized.

More Improvements
Internally, we have dropped our reference counting scheme in favor of a mark-and-sweep
garbage collector. Memory is allocated in larger chunks now, reducing the overhead and
thus overall memory usage. Several new compile-time macros can now be defined to get
more exacting control over how memory is used, which is important for systems with
little memory. In addition, the internal engine is no longer burdened with needing to track
reference counts, which allows pure computational scripts to perform significantly better.
None of these changes required any alteration of the ScriptEase ISDK API, so all
programs will continue to work without modification.

To go along with these changes, improvements have been made to the ScriptEase API

22 ScriptEase ISDK/C

itself. All of these changes are backwards-compatible, so you will not have to modify
your application, just recompile and relink.

A new call has been added to force or disable garbage collection. jseInterpret() and
jseCallFunction() now allow errors generated within them to be trapped instead of always
being printed out. jseCallFunction() also makes it easier now to call a constructor
function to generate a new object.

With all these improvements, ScriptEase version 4.20 is the best ScriptEase ever. Enjoy!

Integrating the ISDK/C 23

Integrating the ISDK/C

This chapter describes the methods for integrating the ScriptEase:ISDK/C into your
application. Integration is comprised of three elements: jseContext, function wrappers,
and jseVariables. All functions mentioned in this chapter are fully described beginning in
the API chapter.

Unpacking, Installing ScriptEase:ISDK/C
The package you received consists of 3 basic parts: the various ScriptEase:ISDK/C
Interpreter Engines, the ScriptEase Standard Function Library source code, and
miscellaneous source files required to support the interpreter engine.

ScriptEase:ISDK/C Interpreter Engines are the static and dynamic linked libraries in the
seisdk\libs directory. The ScriptEase:ISDK/C Interpreter Engine contains the complete
interpreter (i.e. parser, interpreter, operator and flow-control commands), but does not
include any function libraries.

You will find one or more interpreter engines in your installation tree. All of the engines
interpret scripts identically; use the version that corresponds to your compiler and
operating system.

Run the install or setup program to install ScriptEase:ISDK/C to your hard drive. This
unpacks and copies all the source and sample code to the drive and directory you specify.
Refer to the file README.TXT on the first installation disk for any last minute
information and for more details on the installation procedure.

24 ScriptEase ISDK/C

The install program will build a directory tree resembling the following:
se420

incjse
srclib

ecma
common
clib
win

srcmisc
srcapp
seisdk

samples
simple0
simple1
simple2
simpedit

libs
srccore (if you have licensed source to the engine)

Integration overview

Integrating the SDK with your application is a simple and straightforward procedure.
You must include the source files in your project or makefile, and make several
directories available to your compiler.

You must also create a file called JSEOPT.H to include in your application's source file.
This is a header file that defines certain flags the interpreter must use for proper operation
and system identification. These definitions may be done on the compiler's command line
if it is more convenient to do so, but the JSEOPT.H file must still exist, since the
interpreter relies on it to operate.

To run the interpreter from within your application, it must first be initialized with
jseInitializeEngine(). Then a jseContext for the scripting session must be created by
calling jseInitializeExternalLink().

The jseContext defines the scripting session's global variables, functions, security, and
operating parameters (such as error handling). Although usually one jseContext is
sufficient, you may use more than one jseContext to create simultaneous and independent
scripting sessions, with unique sets of global variables and available functions. When
your application is finished scripting, these jsecontexts must be de-initialized by calling
jseTerminateExternalLink() and jseTerminateEngine().

Finally, for each function you make available you must write a wrapper function that
converts variable types from ScriptEase JavaScript to C and back. These functions must

Integrating the ISDK/C 25

then be assigned to the jseContext with calls to jseAddLibrary(). Nombas provides many
pre-written wrapper functions which you may include in your projects.

Executing a script from within your application is done with a single call to jseInterpret().

JS Objects
& Libraries

Your
Application

SE
JavaScript

Engine

API

Customized and/or
User-customizable

Application

The ScriptEase ISDK

Environment

You can use the ISDK to quickly and easily
customize your applications.

Your application uses the SE JavaScript engine, and
the libraries, to offer macros and customizing to
your Users.

The ISDK's API (Application Programming
Interface) gives you a variety of ways to interact
with the JavaScript Engine.

User

26 ScriptEase ISDK/C

Required source code and headers
The compiled ScriptEase libraries contain most of the core ScriptEase interpreter. You
will need to set up your project or makefile to link with one of these libraries. Given the
compact nature of the ScriptEase engine, we encourage customers to use the static
libraries whenever possible as it makes your application easier to maintain.

There are several C/C++ source files that you must include with your project or makefile
depending on the options selected in JSEOPT.H. These source files will be found in
srcmisc for miscellaneous functions, srcapp for default callbacks an application must
provide and the srclib tree for pre-written language objects and libraries.

JSEOPT.H
JSEOPT.H is a header file that defines the application's operating system and how it links
with the interpreter. If you plan to use any of the Nombas supplied wrapper functions you
must define the appropriate file in JSEOPT.H (A complete list of Nombas supplied
functions can be found in the API chapter, and a complete list of Types and Macros can
be found in that chapter, next). A JSEOPT.H file must be compiled with every
application that uses the Integration SDK/C.

Your JSEOPT.H file defines the operating system with a __JSE_XXX__ define, where
XXX refers to the target operating system. These are some of the common systems (more
can be found in JSELIB.H). Note that each begins and ends with two underscore
characters:

DOS __JSE_DOS16__
DOS32 __JSE_DOS32__
OS/2 __JSE_OS2TEXT__ or __JSE_OS2PM__
16-bit Windows __JSE_WIN16__
32-bit Windows __JSE_WIN32__
UNIX __JSE_UNIX__
MacOS (PPC & 68K) __JSE_MACPPC__ or __JSE_MAC68K__

The JSEOPT.H file also specifies the method used to link with the ScriptEase interpreter.
This will be a static library or a shared library, depending on the platform your
application runs on: for OS/2, Windows and protected mode DOS it is a DLL or static
library; for UNIX it is an ELF shared object; on the Macintosh Operating Systems it is a
code fragment. Refer to the table below for the library/platform combinations available
and the associated directives.

Integrating the ISDK/C 27

q DOS: Static Library
q DOS32: Static Library
q OS/2: Static Library or load-time DLL
q Windows: Static Library, load-time DLL or runtime DLL
q UNIX: Static Library
q MacOS (PPC & 68K): Static Library
If you are linking with the static library, you must define __JSE_LIB__.

If you are linking with the load-time DLL, you must define __JSE_DLLLOAD__.

If you are linking with the run-time DLL, you must define __JSE_DLLRUN__.

These directives can be omitted from the JSEOPT.H and specified on your compiler's
command line if it is more convenient to do so, but an empty JSEOPT.H file must be
included with your application's code.

In this file you may define any number of preset values to include functions from Nom-
bas' libraries. After defining any options and functions to include, you must then include
the file ?seall.h". This will automatically include all the header files that you need and in
the correct order.

Example of a JSEOPT.H file
Here is an example of a JSEOPT.H file for an application that allows its users to use the
printf() and puts() functions of the standard C library.
 #ifndef _JSEOPT_H
 #define _JSEOPT_H
 #define __JSE_WIN32__ // Build for Win32
 #define __JSE_LIB__ // Link with static library
 #define JSE_CLIB_ALL // Include all the Clib functions
 #define JSE_CLIB_PUTS 0 // Don't include Clib.puts
 #define JSE_LANG_ALL // Include all of the Language library
 #include ?seall.h" // This will include everything for you
 #endif
There are a large number of flags that can be modified to specify exactly what commands
will be understood by the interpreter. These flags and their default values are listed in the
chapter on Preprocessor Options.

Initializing the ISDK/C with your application
Before any scripting takes place, your application must initialize the ScriptEase
interpreter by calling jseInitializeEngine(). This call starts off the entire scripting session.
jseInitializeEngine() returns the version number of the ScriptEase:ISDK/C interpreter.
Compare this with JSE_ENGINE_VERSION_ID to ensure that the proper library or DLL
is installed.

28 ScriptEase ISDK/C

jseContext
For each instance of scripting, you must create a jseContext to define the scripting
session's operating environment and parameters. The jseContext provides a handle for all
calls to and from the SDK/C. It sets up and begins the scripting session, defines its global
data, routines for error handling, and security. You must specify a context whenever you
get or set the value of a ScriptEase variable or request the state of the ScriptEase engine.

Contexts are dynamic; the ScriptEase processor will modify them while the script
executes. For this reason, you must use the context supplied as a function parameter in
your wrapper routines for all ScriptEase:ISDK/C calls, and not the one you initially
create, unless instructed to do otherwise.

You may use several jseContexts in the same application. This is useful if you need
scripts in different areas of your application and you don't want them to have access to
the same functions and variables. Whenever you add ScriptEase libraries or variables,
you add them to a specific context.

Creating a jseContext
Create a jseContext by calling jseInitializeExternalLink(). A jseContext will be returned.
It is now ready for the functions used in your scripting session to be incorporated via
jseAddLibrary(). Save this context; you will need it to terminate the link to the interpreter
at the end of the scripting session.

jseIntializeExternalLink() takes four parameters: LinkData, a pointer to any data you
wish to make available to scripts using the jseContext you are creating; LinkParms, a
structure whose members specify various aspects of the scripting session; Global Name,
the name for the top-level global variable in that context; and Userkey, your license ID.

LinkData is a "cookie" which provides you with a way to pass information to the
routines you supply to a ScriptEase context.

jseExternalLinkParameters is a pointer to a structure defining the context parameters and
options of the scripting session. It is fully described in the next section.

The jseExternalLinkParameters structure
The jseExternalLinkParameters structure defines the options that will be in effect during
the scripting session. Its fields include pointers to functions that specify the data access,
error messaging, breakpoint control, and variable scope.

Required
jsePrintErrorFunc is called by the interpreter when an script encounters an error
condition. It will be called before the function cleans up the error. errorString is the

Integrating the ISDK/C 29

message associated with the error. This may be set to NULL for no error messaging (i.e.,
no function will be called before clean up).

Nombas provides a default version of this function, called ToolkitAppFileSearch, which
is found in the file srcapp\fsearch.c. Be sure to include the header file fsearch.h for a
prototype of this function (This header is automatically included with seall.h).

For Optional File I/O
jseFileFindFunc and jseGetSourceFunc, described below, together form the file access
system for your scripts. The most common implementation would just locate source files
and read them line by line; however, you may configure them to find and read any type of
data from any local or remote source.

jseFileFindFunc translates whatever was supplied as a data source into a filename (or
other address) the interpreter can use. A simple implementation would just make sure that
the file specification received is complete and valid; it could also prevent access to
certain files or directories or translate arbitrary strings into valid filenames.
jseFileFindFunc is called before the interpreter begins reading from the source file passed
to jseInterpret(), before reading a file specified by a #include directive, and before linking
with a file defined by the #link directive.

FileSpec is a NULL-terminated string representing a partial representation of the file.
This will be whatever was passed to jseInterpret() or what was in the #include or
#link spec.

FilePathResults: A buffer where your application can store the results of the
filefind, if a file was found. If this function returns True then this will be the value
passed to the jseGetSource() jseNewOpen call.

FilePathLen: the size of the FilePathResults buffer.

FindLink: Set this to True of the file sought is part of a #link statement; otherwise it
should be set to False.

jseGetSourceFunc tells the interpreter how to open the files for internal use. The file
information is held in the jseToolkitAppSource structure, while flags specifies the action
that is to be taken on the file.
 typedef jsebool (JSE_CFUNC FAR_CALL *jseGetSourceFunc)
 (jseContext, jsecontext, struct,
 jseToolkitAppSource, jseToolkitAppFlags, flags);

30 ScriptEase ISDK/C

The jseAppSource structure (the second parameter to jseGetSourceFunc) has this
prototype:
 struct jseToolkitAppSource
 {
 char * code;
 cost char * name
 uint lineNumber
 void * userdata
 }
code contains the line of code read from the file. You must allocate memory for this
pointer.

name is the name of the file being accessed.

lineNumber: This is the line number of the line that is to be read and stored in code.
Both the application and core can read and write to this value. It is initialized to zero for
each file and incremented before each call to jseGetSourceFunc(), so you don't need to
modify this value if each subsequent call represents the next higher line number. This
value is used for error reporting and debugging by the core.

userdata may be used to store any data you want to pass to the function.

flags: this will be one of the following values, depending on how the file is to be treated:
jseNewOpen, jseGetNext or jseClose.

jseNewOpen indicates that the interpreter wishes to open the file;

jseGetNext reads and returns the next line of the file,

jseClose is sent when the file is ready to be closed.

Other Optional Functions
Set these options to NULL if not wanted.

jseMayIContinueFunc will be called after each command in the script is executed. If the
continue routine returns True, the macro script will continue; if False is returned, the
script will be terminated. If you do not want to have any function called, set this
parameter to NULL. You can use this function to provide a debugging interface (use
jseLocateSource() to retrieve the name and line number of the current location in the
script being run), a callback monitoring function for your scripts, call multitasking tickler
routines, or check on external status such as the pressing of ctrl-C or break.
 typedef jsebool (JSE_CFUNC FAR_CALL *jseMayIContinueFunc)

 (jseContext jsecontext);

jseAtErrorFunc and Error Handling
An error can be generated in a number of ways: a code error can happen, like trying to
read an undefined variable; an API wrapper function can use jseLibErrorPrintf to
generate an error; the script can have a 'throw' statement.

Integrating the ISDK/C 31

In any case, your 'jseAtErrorFunc' is immediately called. A structure is passed to it that
has information about the error. (This structure can be extended in future releases.)

The first member is 'errorVariable'. This is the error being generated. It is possible
for this not to be an object, but it usually is. For instance, 'throw "foo";' will have the
error variable be the string "foo". All error objects can be transformed into strings
using 'jseCreateConvertedVariable(...,jseToString)'.

The second parameter, trapped, determines whether or not the error will be trapped.
Simply, if it is not trapped, your PrintError function (see below) will be called
immediately after the AtError function. It means that no 'try/catch' handlers are in
effect that could possibly catch the error.

At any rate, you are free to examine the state of the interpreter, check the line number,
read variables, and so forth. If you are in a debugger, for instance, you can check the
kind of error object to determine if you want to call a halt for the user, probably based on
preferences the user has set.

The ErrorMessageFunc is called to deliver an error message to the user. Usually, you
will print this to the screen or pop up a dialog box with the information. You can check
variables, and so forth. However, note that this function is not called until the error is no
longer trapped. For instance, if you are in a try block, then no error message will be
printed at the point of the error, instead the code will unwind and the 'catch' handler gets
to decide what to do with the message.

In a simple script, that uses no try/catch handling, the error function will print at the point
of the error. In this case, the AtError func will be called first, if it exists. 'trapped' in the
AtErrorStruct will be False. When this function returns, the ErrorMessageFunc will be
called immediately.

 struct AtErrorStruct
 {
 jseVariable errorVariable;
 jsebool trapped;
 };

 typedef void (JSE_CFUNC FAR_CALL *jseErrorMessageFunc)\
 (jseContext jsecontext,const jsecharptr
ErrorString);
 typedef void (JSE_CFUNC FAR_CALL *jseAtErrorFunc)\
 (jseContext jsecontext,jseVariable errorObject);

AppLinkFunction is only used if you call jseAppExternalLinkRequest(); otherwise it
should be set to NULL. jseAppExternalLinkRequest() is used to start up a new scripting
session and create a new jseContext based on the current context. The AppLinkFunction
initializes values for the new jseContext created.

32 ScriptEase ISDK/C

 typedef jseContext (JSE_CFUNC FAR_CALL *jseAppLinkFunc)
 (jseContext, jsecontext, boolean,
 initialize);

initialize is a boolean value indicating whether the script is being initialized or
terminated. If it is True, the script is being initialized, the jseContext passed in is the
context for the current (primary) session; the AppLinkFunction must return the
context of the new session. If it is False, the script is terminating, and the jseContext
passed in must be the jseContext returned from the call to initialize the session.

jseSecureCode is either a block of JavaScript code or a full file name and path to a script
that performs the security checking. The format of such a file is explained in the next
section. If there is no security check, this parameter must be set to NULL. This parameter
is ignored by the 16-bit DOS version of the interpreter. (Security is not enabled in the
16-bit DOS version; please contact Nombas if you need security capabilities for 16-bit
DOS).

options is an Or mask of the following values. These options configure how the
interpreter handles variables:

jseDefault - Use this flag to use the system defaults.

jseOptRequireVarKeyword - Use this flag if you want to force your users to use
the 'var' keyword when creating variables.

jseOptRequireFunctionKeyword - Use this flag if you want to force your users to
use the 'function' keyword when creating functions.

jseOptDefaultLocalVars - Use this flag if you want variables declared in a local
environment to be local, regardless of whether the var keyword is used or not. (In
JavaScript, variables declared without the var keyword would normally be global). If
there is a like-named global variable, instead of creating a local variable the global
variable would be used.

jseOptDefaultCBehavior - If this flag is defined, functions will be treated as if they
were created with the 'cfunction' keyword, regardless of what keyword they were
defined with.

jseOptWarnBadMath - If this flag is set, the interpreter will notify you when you
make illegal mathematical calculations (such as dividing by zero). In JavaScript,
dividing by zero normally returns the value NaN and does not generate an error.

jseOptLenientConversion - this option causes variables to automatically be
converted to the required type if possible, instead of generating an error. With this
option set the macro JSE_VN_CONVERT() will always behave as if the first
parameter passed were JSE_VN_ALL. The jsePutxxx() functions will convert the
variable to the required type. If you are retrieving data from a variable that is not of
the correct type, a copy of the variable will be made, converted to the correct type,
and returned.

jseOptIgnoreExtraParameters - If this option is set, the interpreter will ignore any
parameters greater than the maximum allowed for the function (specified in the
Function Descriptor table added to the context with jseAddLibrary().

Integrating the ISDK/C 33

Terminating a jseContext
The jseContext must be terminated once you are done using it. This ensures that all
system resources are properly freed. To terminate a jseContext, make a call to
jseTerminateExternalLink(). This routine takes one argument, the root jseContext to
terminate. This must be the same context returned by jseInitializeExternalLink(), and not
one of the derived contexts. You must make a call to jseTerminateExternalLink() for each
jseContext. After this call, no more calls may be made to the terminated context.

Terminating the interpreter engine
Make a call to jseTerminateEngine() to shutdown the ScriptEase Interpreter Engine. This
call should be made only once, following the last call to jseTerminateExternalLink(), to
free the resources allocated by the engine during the call to jseInitializeEngine(). You
only need to make this call if you are linking with the static library version of the
ScriptEase:ISDK/C. The dynamically linked version makes this call for you in its
termination code.

Security code
You may provide a security filter to prevent certain functions from executing and to limit
scripts to working in certain directories or files. The security filter is a script, so it can be
easily modified without recompiling your application. The security script will be called
before a script is run and before every function call. The full path and filename to the file
containing the code is passed to jseInitializeExternalParameters() when obtaining the
jseContext.

The security script contains a SecurityGuard() function, and optionally may contain
SecurityInit() or SecurityTerm() functions. SecurityGuard() receives the name of the
function being called as its second parameter and tests to see whether the function call is
permitted or not. SecurityInit() is called before the script runs, and SecurityTerm() is
called when the script terminates.

Here is an example of a security file for an application that wants to prevent users from
using any unsafe functions except for fclose() and fopen(). (Unsafe functions are those
that have the potential modify the files or operating system in some way). This security
file limits the fopen() function to only work in certain directories, to prevent unauthorized
snooping around, It also adds to the PATH variable before running the script, and
removes it when it is done.

34 ScriptEase ISDK/C

 SecurityInit(SecurityVar)
 {
 // initialize SecurityVar
 SecurityVar.TempDir = getenv("TEMP");
 AddPath(...add a few directories to PATH...);
 return True;
 }
 SecurityTerm(SecurityVar)
 {
 DeletePath(...remove stuff added to PATH...);
 return True;
 }
 SecurityGuard(SecurityVar,FunctionName,var1,var2,var)
 {
 switch(FunctionName)
 {
 case "FCLOSE":
 return True; // always succeed
 case "FOPEN":
 // limit fopen()
 default:
 // no other security-risk functions allowed
 return False;
 }
 }

Testing the integration
To be sure the interpreter has been integrated correctly, add a call to interpret a test script.
The script can be simply "a=1", for example:
 jseInterpret (jseContext, null, "a=1;", null, jseAllNew,
 JSE_INTERPRET_CALL_MAIN, null, &ReturnCode);
Add this function between where you call jseInitializeExternalLink and
jseTerminateExternalLink. If you can compile, link, and run this test code, then the
interpreter is properly included in your application and functioning correctly.

API error messages
The two functions jseGetLastAPIError() and jseClearAPIError() facilitate debugging the
integration. If an API call is improperly made a message describing the error is set in the
interpreter's error buffer. The error may or may not cause the interpreter to fail, although
your application will most likely crash at some point if it uses the bad data. If a script
causes your application to crash, see if an error message has been set by calling
jseGetLastAPIError(). We recommend using frequent calls to jseGetLastAPIError() to
catch these problems early on, particularly if you are debugging or are just starting out
using the ISDK/C. jseClearAPIError() removes the current error message from the buffer.

Integrating the ISDK/C 35

Adding functions to the ScriptEase engine
Once you have initialized the interpreter and created a jseContext, you must register any
functions you want to make available to your users. This is a three step process:

• Every function you make available to your users must be entered into a function
library table. The function library table is an array of structures that contain the
function's name as it will be called by your users, a pointer to the corresponding
wrapper function, the minimum and maximum number of arguments for the
function, and a mask of options.

• Call jseAddLibrary() to register the function library table(s) with the ScriptEase
interpreter.

• Write wrapper routines for the functions you wish to add to the function library. The
wrapper function retrieves the function arguments from the ScriptEase call, translates
the data from ScriptEase to C, makes your application call, and then translates any C
values back into ScriptEase for return.

Object methods and object constructor functions are included in your application in the
same way as regular functions are. If the function is one of the Nombas supplied methods
or standard ECMAScript/JavaScript objects, you don't need to worry about creating a
wrapper routine. Instead, you can just define the method in the JSEOPT.H file. Instead of
calling jseAddLibrary() to register the library with the jseContext, you must call the
relevant LoadLibrary_xxx() function, as described in the appendix "Standard JavaScript
Objects and Methods and Nombas' Extensions."

Creating a ScriptEase function library table
A ScriptEase function table is an array of function descriptors. Each element of the array
specifies to the interpreter the details of a function to be added to the ScriptEase library.
The function descriptor assigns the ScriptEase function its name, the address of the
compiled C function, and the number of arguments (minimum and maximum) the
ScriptEase function takes. There is no limit to the number of functions that can be
specified in a function library table, nor is there any limit to the number of library tables
that may be added to a given jseContext.

The ScriptEase:ISDK/C provides a number of macros to assist in building the table.
Which macro you use will depend on the type of function being added to the table:
JSE_LIBOBJECT This defines what is being added to the table as an object. The object
added with JSE_LIBOBJECT is the current object; it will remain current until another
call to JSE_LIBOBJECT creates a new current object. Functions and variables added
with the other macros (listed below) will be added as properties and methods of the
current object.

36 ScriptEase ISDK/C

JSE_LIBMETHOD To add a method or function to the current object. The method will
be added to the last object called with JSE_LIBOBJECT.
JSE_PROTOMETH To add a method to the current object's prototype.
JSE_VARASSIGN This macro creates a copy of an already existing variable and assigns
it to the current object.
JSE_VARNUMBER Use this macro to assign a numerical value as a property of the
current object.
JSE_VARSTRING Use this macro to assign a string value as a property of the current
object.
JSE_ATTRIBUTE This macro creates an undefined variable with specified attributes. It
can also be used to change the attributes of an extant variable.
JSE_FUNC_END To indicate the last entry in a table

These macros have the following syntax:
 JSE_LIBOBJECT(name, addr, min, max, varAttr, funcAttr)
 JSE_LIBMETHOD(name, addr, min, max, varAttr, funcAttr)
 JSE_PROTOMETH(name, addr, min, max, varAttr, funcAttr)
 JSE_VARASSIGN(name, variable, varAttr)
 JSE_VARNUMBER(name, var_number, varAttr)
 JSE_VARSTRING(name, var_string, varAttr)
These macros take the following parameters, as indicated above:

name is a string representing the name to give to your function in a script. It should be an
ASCII string such as "GetString". This is the name by which your users will refer to the
added function or property.
addr is a pointer to the function called by the ScriptEase Interpreter Engine, i.e., the
name of the wrapper function that corresponds to the function listed above.
min is used to specify the minimum number of arguments that can be passed to your new
ScriptEase function (0-127).
max is used to specify the maximum number of arguments that can be passed to the
function (0127). For no maximum, (i.e. variable argument lists) set MaxVariableCount to
-1. Set the maximum and the minimum to the same value to specify an exact argument
count. If a script calls a function whose parameters do not meet the function parameter
requirements, the script will be terminated with appropriate error handling.

varAttr is an or mask of one or more of the following:
jseDefaultAttr is used as a place holder for this parameter when you don't want to use
any of the other options.
jseDontEnum This will prevent the property or method from being listed.
jseDontDelete Don't allow deletes on this element
jseReadOnly Makes the property or method read only.
jseImplicitThis Add this to the prototype chain (functions only).

Integrating the ISDK/C 37

jseImplicitParents This option allows you to change the variable's scope chain, creating
global variables from another object's variables. It works in tandem with the .__parent__
(two underscores preceding and following "parent") property. If a function variable has
the jseImplicitParents option set, you can assign the properties of another object to it by
setting the .__parent__ property of the object to which the function is assigned to the
object whose properties you want to make available to the function. Consider the
following example:

 var foo;
 foo.a = 0;

 var goo;
 goo.__parent__ = foo;
 goo.increment = my_increment;

 goo.increment();
 // The above call actually modifies foo.a, since goo's
 // parent is foo
 Clib.printf("foo.a = %d\n",foo.a);

 //(this function must have its jseImplicitParents flag
 // set)
 function my_increment()
 {
 a++;
 }

funcAttr is an or mask of one or more of the following:
jseFunc_Default to specify the default behavior
jseFunc_CBehavior specifies that the function uses C behavior regarding strings and
variables
jseFunc_Secure indicates that the function is safe to call. If this is not supplied, a
security risk is assumed.
variable is a variable which has already been included in the function library table.
var_number is a number variable or value to be assigned to the current object.
var_string is a string variable, enclosed in quotes, or a literal string enclosed in quotes
("\"literal string\"", e.g.), to be added as a property of the current object.

Initializing a ScriptEase function library table
A Function Library Table is initialized and added to a specific context by calling
jseAddLibrary(). For example:

 jseAddLibrary(jseContext, ParentObject, jseFunctionTable,
 jseLibraryInitData, jseLibraryInitFunction,
 jseLibraryTerminateFunction);

jseContext is the jseContext to which the library will be added. Use the value returned by
jseInitializeExternalLink().

38 ScriptEase ISDK/C

ParentObject is the object to which the function belongs. Set this to "Global" to make
the function available to all objects.

jseFunctionTable is the array of ScriptEase function descriptors to be added to the
library.

jseLibraryInitData is a variable to contain any data that must be passed to
jseLibraryInitFunction (described below). If there is no data to pass, set to NULL.

jseLibraryInitFunction is a pointer to the function the interpreter engine will call once
before using the library being added. The return value from the jseLibraryInitFunction is
a generic pointer to the library data. This data is available to all library functions via
jseLibraryData().

If the function being added to the interpreter is a constructor function for an object, the
jseLibraryInitFunction may assign properties to the object with jseMember(), jseAssign(),
jseMemberWrapperFunction(), or a related function.

For example, a structure could be allocated in the initialization function and returned as
the library data. All functions within the library can make a call to GetLibraryData() to
access the allocated structure. The prototype for jseLibraryInitFunction() is:

 void _FAR_ __cdecl FAR_CALL
 *jseLibraryInitFunction(jseContext jseContext, void_FAR_
 *PreviousInstanceLibraryData);

jseContext is the context provided by the interpreter engine for use by
ScriptEase:ISDK/C calls in your jseLibraryInitFunction().

PreviousInstanceLibraryData is a pointer to the library data for a previous instance of
the same library if one exists. In most cases this is set to NULL (unless the library is
being reinitialized in a recursive call to jseInterpret()).

jseLibraryTerminateFunction is the function you provide that will be called when the
library is no longer in use by the interpreter engine. This is called following the a call to
terminate a jseContext by jseTerminateExternalLink() (or when a recursive call to
jseInterpret() terminates). When the library terminate function is called, it must free any
data that was allocated in the initialize function. The jseLibraryTerminateFunction()
prototype is:

 void _FAR_ __CDECL FAR_CALL
 jseLibraryTerminateFunction(jseContext jseContext,
 void_FAR *InstanceLibraryData);

jseContext is the context provided by the ScriptEase Engine for use in ISDK/C calls in
your jseLibraryTerminateFunction().

InstanceLibraryData is a pointer to the library data for this library. If the library data
was allocated in the initialize library function, free it in the terminate function. Either the
init or the term functions may be NULL if you do not require these features.

Integrating the ISDK/C 39

Writing ScriptEase function wrappers
Writing wrapper functions for new ScriptEase functions involves three steps:
• Retrieve the function arguments passed in the script. First you must create variables

to contain the function arguments, and then extract the data from the script with one
of the jseGetXXX() functions. This will translate them from ScriptEase to C for use
in your code;

• Calculate the value to be returned and execute any functions required to execute the
script's function;

• Call on of the jseReturnXXX() functions to return a value to the script.

Wrapper routines take the following form:
 void JSE_CFUNC FAR_CALL FunctionName(jseContext jseContext)

The jseExternalLibFunc(FunctionName) macro can be used to prototype and define your
wrapper routines.

Retrieving function arguments in a wrapper function
Three functions get a jseVariable pointer to function arguments: jseFuncVar(),
jseFuncVarNeed(), and the C++ macro JSE_FUNC_VAR_NEED(). Which method you
use will depend on the type of variable, your application environment, and programming
style. The end result of each is the same: to provide a handle to a variable your code can
use to store a value passed from a script.

jseFuncVarNeed()
jseFuncVarNeed() provides type checking on a jseVariable being passed from a script.
The script being interpreted will generate an error message and terminate if the
appropriate variable is not found. The variable's type is checked just prior to retrieving its
handle, so the handle returned can be relied upon to be a valid jseVariable and of the type
expected.

 jseVariable JSE_CFUNC
 jseFuncVarNeed(jseContext jseContext,
 uint ParameterOffset,
 jseVarNeeded need);

jseFuncVarNeed() takes three parameters: the jseContext for the current scripting session,
the offset of the parameter in the parameter list (0 for the first parameter, 1 for the
second, etc.), and a value indicating the argument type expected by the script's function.

40 ScriptEase ISDK/C

This value may be one or more of the following, depending on the variable type you
expect to receive:

JSE_VN_NUMBER
JSE_VN_STRING
JSE_VN_BOOLEAN
JSE_VN_BUFFER
JSE_VN_NULL
JSE_VN_OBJECT
JSE_VN_FUNCTION
JSE_VN_BYTE
JSE_VN_INT
JSE_VN_ANY
JSE_VN_NOT()
JSE_VN_CONVERT(from, to)

If a variable may have more than one possible type, all possible types should be supplied,
joined by a bitwise or (JSE_VN_STRING | JSE_VN_NUMBER, e.g.). The last three
values on the list are used when the variable type is unknown and in cases where more
than one variable type is expected. JSE_VN_ANY will accept a variable of any type.
JSE_VN_NOT() will accept a variable of any type other than those passed to the macro.
If you are passing more than one value to JSE_VN_NOT, they should be joined by an or
(|). JSE_VN_CONVERT() takes two parameters. The first is an or mask of variable types
to be accepted; the macro converts the variable to whatever type is specified by the
second parameter.

The jseContext used in these calls must be the context passed to your wrapper function.
Once a jseVariable handle has been obtained, data can safely be extracted, set to a new
value or converted to a new type.

jseFuncVarNeed() returns NULL on failure. If NULL is returned, your error routine will
have been called, and the script being interpreted will abort when it returns from your
wrapper function.

jseFuncVar()
If a function expects a variable of unknown type or if the wrapper function assigns a type
to the variable, use jseFuncVar() to obtain the variable's handle. It retrieves a variable
handle regardless of its type. jseFuncVar() is prototyped as:

 jseVariable JSE_CFUNC
 jseFuncVar(jseContext jseContext, uint ParameterOffset);

Like jseFuncVarNeed(), jseFuncVar() returns NULL on failure. If NULL is returned, your
error routine will have been called, and the ScriptEase macro script being interpreted will
abort on return from your wrapper function.

Integrating the ISDK/C 41

JSE_FUNC_VAR_NEED()
The JSE_FUNC_VAR_NEED() macro may be used with C++ compilers to simplify the
retrieval of validated variables from the parameters passed to a library function and
testing them for success. Since JSE_FUNC_VAR_NEED() returns from the wrapper
function if the variable is not valid, all statements following JSE_FUNC_VAR_NEED()
can safely assume valid variables.

The JSE_FUNC_VAR_NEED() macro is defined as:
JSE_FUNC_VAR_NEED(varname,jsecontext,ParameterOffset,need)
 jseVariable varname;
 if (NULL == (varname = jseFuncVarNeed (jseContext,
 ParameterOffset, need)))
 return

JSE_FUNC_VAR_NEED() will return if an error occurred checking the variable, so this
function is most useful in the beginning of your function, before any statements that may
need cleaning up prior to returning from the function. For instance, you would not want
JSE_FUNC_VAR_NEED() after fopen() because it could return without calling fclose().

Getting Data From jseVariables
Once you have a jseVariable handle, the data can be retrieved by calling the appropriate
jseGetXXX() function. There is a specific get function for each of the ScriptEase types
(jseGetLong() and jseGetString(), e.g.).

For example, if your function had one argument that was a number, you would use
jseGetLong() to get the value of the ScriptEase variable.

 // get the value from a jseLongVar.
 longArgumentVal = jseGetLong(jseContext, jseLongVar);
 printf("%d", longArgumentVal);

If you used jseFuncVar() to get the handle to a function argument, first check the
ScriptEase type before accessing its data. jseGetType() will return a jseDataType of
jseTypeByte, jseTypeLong, jseTypeFloat, jseTypeObject or jseTypeUnknown. If you try
to access the data of a jseVariable of one type with the jseGetXXX() function of another
type, the interpreter will attempt to convert the data type from the actual type to the type
requested if those types are convertible.

You do not need to check the type if you are just assigning a value to the variable and not
extracting its value, although you may need to convert its type with jseConvert().

Assigning values to jseVariables
Setting the value of a jseVariable is similar to getting the value. Using the jseVariable
handle, call one of the jsePutXXX() functions. For example, if your function had one
argument that was an integer, you would use jsePutLong() to set the value of the
ScriptEase variable.

42 ScriptEase ISDK/C

 longValue = 1000 * 1000;
 jsePutLong(jseContext, jseLongVar, longValue);

To ensure that the new value is of the appropriate data type as the jseVariable, use
jseConvert() before assigning the new value. jseConvert() will return with an error if it
cannot convert the variable to the requested type.

The jsePutXXX() functions will have a permanent effect only if the wrapper function is
for a cfunction or an object.

Returning values from a wrapper function
To return a primitive value from a wrapper function, use the appropriate jseReturnXXX()
function: to return a long, use jseReturnLong(); to return a float, use jseReturnNumber().
Both require the context that was passed to your wrapper function as the first argument,
and the value to return as the second.

 // Return a long from a ScriptEase wrapper function.
 jseReturnLong(jseContext, 3006);

 // Return a float from a ScriptEase wrapper function.
 jseReturnNumber(jsecontext,22.22);

Returning an object requires a call to jseReturnVar(). jseReturnVar() puts a generic data
type on the jseStack to be returned to the script. jseReturnVar() can be used to return data
of any type, although it is better to use the typed functions (jseReturnLong(), e.g.) if
possible. Call jseReturnVar() with three arguments:

 jseReturnVar(jseContext, MyjseVar, jseRetTempVar);
The first argument, jseContext, is the jseContext provided by the wrapper function. The
second argument is the jseVariable to return. The last argument is the return action. This
argument tells the ScriptEase engine what to do with the data space once the function has
returned and the statement that called the function has completed. Possible values for this
parameter are:

jseRetTempVar - the variable will be destroyed when popped from the stack.

jseRetCopyToTempVar - the variable is copied, and the copy is put on the stack. It
will be destroyed when popped from the stack.

jseRetKeepLVar - the variable will not be destroyed unless instructed to do so with
a call to jseDestroyVariable.

In nearly all cases this should be set to jseRetTempVar.

Passing and returning simple data types
Passing and returning one of the primitive data types (numbers, strings and booleans)
involves calling jseFuncVarNeed() to get the appropriately typed jseVariable and then
calling jseGetLong (if a number has been returned, for example) to extract its value. The

Integrating the ISDK/C 43

following example is a wrapper for a function that simply adds two integers and returns
the result. It would be invoked from the script source like this:

 sum = MySumFunction(var1, var2);
Here is the wrapper function:
 ExternalLibFunc(MySumFunction) {
 jseVariable MyjseInit1;
 jseVariable MyjseInit1;
 long MyCint1;
 long MyCint2;
 long MyCint3;
 long MySumInt;

 MyjseInt1 = jseFuncVarNeed(jseContext, 0, JSE_VN_NUMBER);
 MyjseInt2 = jseFuncVarNeed(jseContext, 1, JSE_VN_NUMBER);
 if(MyjseInt1 == NULL || MyjseInt2 == NULL) {
 return;
 }
 MyCint1 = jseGetLong(jseContext, MyjseInt1);
 MyCint2 = jseGetLong(jseContext, MyjseInt2);

 MySumInt = MyCint1 + MyCint2;

 jseReturnLong(jseContext, MySumInt);
 return;
 }

If there is not enough memory to complete the call or an invalid parameter is passed in,
jseFuncVarNeed() will return NULL and call the user-defined error function. The
interpreter will not quit until the wrapper function ends, so it is imperative to exit the
function before it tries to use the bad data. This is why calls to jseFuncVarNeed() are put
at the beginning of the function.

If the call to jseFuncVarNeed() is successful, it returns a pointer to the space in the
interpreter's memory that holds the value of var1. Call jseGetLong() to extract the value
from the variable. Do not access its value directly.

The ISDK/C makes no distinction between short and long integers. Both sizes of integer
use jseGetLong(). Bytes and floats returned by jseGetLong() will be cast as long integers.

Returning an integer requires just one function call, jseReturnLong(). This function
assigns the C variable's value to the jseContext. The ScriptEase interpreter will internally
allocate the data space needed to hold the value.

Passing and returning strings and boolean values is essentially the same. Strings and
booleans both have their own type parameters to the jseFuncVarNeed() call: use
JSE_VN_STRING for strings and JSE_VN_BOOLEAN for boolean values. Use
jseGetString() to extract data from strings, and jseGetNumber() to extract data from
booleans; use these functions in place of jseGetLong() in the example. To return strings
or booleans use jseReturnVar().

For example, here is a script that passes and returns a string:

44 ScriptEase ISDK/C

 jseExternalLibFunc(PromptAndGetS) {
 jseVariable MyjseBuffer;
 char szTextBuffer[80];

 MyjseTextBuffer = jseFuncVarNeed(jseContext, 0,
JSE_VN_STRING);
 ulong str_len;
 strncpy(szTextBuffer, (char*)jseGetString(jseContext,
 MyjseBuffer, &str_len), 78)[79] = '\0';
 printf("%s", szTextBuffer);
 gets(szTextBuffer);
 jsePutString(jseContext, MyjseBuffer, szTextBuffer,
 strlen(szTextBuffer));
 jseReturnVar(jseContext, MyjseBuffer, jseRetCopyToTempVar);
 return;
 }

Passing simple data types by reference
In addition to return values, your wrapper function can return data directly via the
variables on the jseStack. For example, suppose you had a ScriptEase function that
modified a number in some way:

 num = 10;
 ModifyNumber(num);
 if(num == 0) exit(EXIT_ERROR);
To make this function available to your users you must create a wrapper function
such as the following:
 ExternalLibFunc(ModifyNumber) {
 jseVariable MyjseL;
 MyjseL = jseFuncVar(jseContext, 0);

 // If returned NULL this type can't convert to an integer
 if(NULL != jseConvert(jseContext,MyjseL,jseTypeLong, 0))
 {
 jsePutLong(jseContext, MyjseL, GetANumber());
 }
 return;
 }

When you pass simple data types by reference you can skip the type checking of the
jseVariable. The current variable type is of no importance (it may not even have a type
yet (jseTypeUnknown)) because we will use jseConvert() to ensure that the variable is of
the correct type.

You still need to associate the parameter offset with a jseVariable. Call jseFuncVar() with
the parameter offset as the second argument to get a jseVariable. Now, convert the
jseVariable into one that will hold a long using jseConvert(). jseConvert() requires the
jseContext, the jseVariable to convert and the new variable dimension. In our case, we
will convert num to a single jseTypeLong. Finally, the value returned by GetANumber()
is passed to jsePutLong(). Calling jsePutLong() inserts the C variable's value into the

Integrating the ISDK/C 45

jseVariable. Upon returning to the script, the script's variable will hold the value returned
by the function GetANumber().

Working with objects
Passing and returning objects involves an additional step. As with the primitive data
types, you must first get a jseVariable for the object with jseFuncVarNeed(). Then get a
handle to the property by calling jseMember(). The data may now be extracted from this
second jseVariable with a call to one of the jseGetXXX functions.

jseMember() has four parameters: the relevant jseContext, the name of the object whose
members are being accessed, the name of the property being accessed, and the data type
of the property.

 jseExternalLibFunc(jseObjectFunc) {
 jseVariable jseVarObject;
 jseVariable jseVar;
 int integer = 0;
 char string[255];
 string[0] = '\0';

 jseVarObject = jseFuncVarNeed(jseContext, 0,
JSE_VN_OBJECT);
 if (jseVarObject == NULL) return;
 jseVar = jseMember(jseContext, jseVarObject, "MyInt",
 jseTypeNumber);
 if (jseVar != NULL) {
 integer = (int)jseGetLong(jseContext, jseVar);
 }
 jseVar = jseMember(jseContext, jseVarObject, "MyString",
 jseTypeString);
 if (jseVar != NULL) {
 ulong str_len;
 strcpy(string,jseGetString(jseContext, jseVar, &str_len));
 }
 printf("string=%s, integer=%d\n", string, integer);
 jseVar = jseMember(jseContext, jseVarObject, "MyNumber",
jseTypeNumber);
 if (jseVar != NULL) {
 jsePutLong(jseContext, jseVar, 17);
 }
return;

The example above gets an object with two properties from the interpreter. One of the
properties (MyString) is a string, and one of them (MyInt) is a number; they will be
stored in the variables integer and string, respectively, and printed to the screen.

The script then tries to get a handle to a MyNumber property. Since no such property
exists, the call to jseMember returns NULL, and creates the new object property. A value
(17 in this example) is then assigned to the property with a call to jsePutLong().

46 ScriptEase ISDK/C

Since jseMember() doesn't allocate any memory in creating new object properties, you
shouldn't try to destroy them when you are through with them. Child variables will be
cleaned up by the interpreter engine when the parent object is destroyed.

Functions with a variable number of arguments

ScriptEase functions may accept a variable number of arguments. For example, consider
the following function, which takes a string as its first parameter, and has an optional
second parameter, a number:

 ret = OneOrTwoArgs("My Dog Has Fleas"); // returns 'M'
 ret = OneOrTwoArgs("My Dog Has Fleas", 7); // returns 'H'

If the integer parameter is not provided, the function returns the first character of the
string. If an integer is provided, the character returned will be at the index position
specified by the integer.

Since the first argument is mandatory, there is no need to treat it differently. It may be
accessed just as in the previous examples. However, you must determine whether the
second parameter exists before you try to extract a value from it. The function
jseFuncVarCount() will return the number of parameters specified for the ScriptEase
function. If the variable exists, the usual jseFuncVarNeed() and jseGetLong() calls to
check the jseVariable type and extract its data.

Integrating the ISDK/C 47

 jseExternalLibFunc(OneOrTwoArgs) {
 jseVariable MyjseString;
 jseVariable MyjseOptNum;
 char *MyCstr;
 ulong MyCoptNumber;
 char MyCchar;
 int index;
 MyjseString = jseFuncVarNeed(jseContext, 0, JSE_VN_STRING);
 if (MyjseString == NULL) {
 return;
 }
 ulong str_len;
 MyCstr = (char *)jseGetString(jseContext,
 MyjseString,&str_len);
 MyjseOptNum = 0;
 if (jseFuncVarCount(jseContext) == 2) {
 MyjseOptNum = jseFuncVarNeed(jseContext, 1, JSE_VN_NUMBER);
 MyCoptNumber = jseGetLong(jseContext, MyjseOptNum);
 }
 if (MyjseOptNum<strlen(MyCstr)) index = MyjseOptNum;
 else index = 0;
 MyCchar = MyCstring[index];
 jseReturnLong(jsecontext,MyCchar);
 return;
 }

Accepting a ScriptEase argument of unknown type
If you do not know what type of variable is to be retrieved, you can use the function
jseFuncVar() instead of jseFuncVarNeed(). jseFuncVar() will accept a variable of any
type. You must then call jseGetType() to determine the variable's type. jseGetType()
returns the jseDataType, which will be one of the following: jseTypeUnknown,
jseTypeObject, jseTypeByte, jseTypeLong, or jseTypeFloat. This provides you with the
information you need to execute the proper C code.

The following example shows the jseVariable jseMysteryVar first being assigned a
handle into the interpreter engine using jseFuncVar(). Before this variable can be used, its
ScriptEase type must be determined with a call to jseGetType().

48 ScriptEase ISDK/C

 jseExternalLibFunc(AnyVarArgs)
 {
 jseVariable jseMysteryVar;
 char *MyCchar;
 int MyCNumber;
 uchar MyCbool;
 ulong len;

 jseMysteryVar = jseFuncVar(jseContext, 0);
 switch(jseGetType(jseContext, jseMysteryVar)) {
 case jseTypeUndefined:
 /* Can set to a jseType here */
 jseConvert(jseContext, jseMysteryVar, jseTypeNumber);
 break;
 case jseTypeString:
 case jseTypeBuffer:
 MyCchar = jseGetBuffer(jseContext, jseMysteryVar, &len);
 break;
 case jseTypeLong:
 MyCNumber = jseGetNumber(jseContext, jseMysteryVar);
 break;
 case jseTypeBoolean:
 MyCbool = (uchar) jseGetNumber(jseContext, jseMysteryVar);
 break;
 }
 return;
 }

This function executes different code depending on the variable type passed. The correct
data extraction function will be called against the ScriptEase variable no matter what the
data type is.

Calling interpreted ScriptEase functions
Once a function has been interpreted with jseInterpret(), it has been registered with the
interpreter. To call the function again you can call jseCallFunction(); this saves the
interpreter from having to re-interpret the function. You can use jseGetNextFunction() to
list all available local functions in a given jseContext.

There are five steps to calling previously interpreted (via jseInterpret()) functions:
• get a handle to the function with jseGetFunction()
• Create a jseStack to manage the variables used by the function
• put variables on the stack with jsePush()
• make the function call with jseCallFunction()
• destroy the jseStack with jseDestroyStack()

Integrating the ISDK/C 49

jseGetFunction() returns a handle to the function, which will be needed for the call to
jseCallFunction(). You may also use the jseMemberFunctions and jseIsFunction to get a
variable that can be called as a ScriptEase function.

Creating a jseStack is easily done by calling jseCreateStack(). This function creates the
stack and allocates the memory it needs. It returns a handle to the stack, which is used in
subsequent calls to jsePush() and jseCallFunction().

Next use jsePush() to put jseVariables on the stack. You must call jsePush() once for each
argument you are passing to the function. jsePush() takes four parameters: jseContext, the
handle of the stack you're working on (as returned by the call to jseStack()), the variable
to be pushed to the stack, and a boolean flag. Set this flag to True if you want the
jseVariable to be automatically destroyed when the stack is destroyed (after the function
returns).

Now you are ready to make the function call with jseCallFunction(). jseCallFunction()
returns True if the function was successfully executed, otherwise it returns False.

Creating (and destroying) jseVariables
ScriptEase variables are created using these jseCreateXXX() functions, each of which
returns the created variable:

 jseCreateVariable()
 jseCreateSiblingVariable()
 jseCreateLongVariable()
 jseCreateConvertedVariable()

Any time a variable is created with any of the above functions, it must eventually be
destroyed. There are two ways to destroy a ScriptEase variable:
• jseDestroyVariable() will destroy any variable created with the above calls.
• If RetAction is jseRetTempVar, jseReturnVar() will destroy the ScriptEase Variable

after it is used. Do not destroy the variable explicitly if it is used as a return variable
in this manner.

Interpreting a ScriptEase script
Once the interpreter has been initialized, your libraries have been added to the ScriptEase
library and any global jseVariables have been established, the ScriptEase engine is ready
to interpret a script. A script can be interpreted at virtually any time during the execution
of your application after you have initialized the interpreter and functions as described
above. Calling jseInterpret() begins the interpreter.

jseInterpret() returns a boolean value to indicate the success or failure of the
interpretation process. jseInterpret() returns True if the script executed completely,
otherwise it returns False. This value is in no way related to the return value of the script
interpreted.

50 ScriptEase ISDK/C

jseInterpret() - flags
These are the three most commons situations encountered when executing a script:

1. You want to execute the code as if it were the only thing running; all variables
created will be destroyed.

2. You want your code to be able to use all variables that are currently available for the
jseContext, and all variables created by the script will remain after the script
terminates.

3. You want your code to be able to use all variables that are currently available for the
jseContext, but you don't want the variables created by the script to remain after the
script terminates.

The flags to use for the jseNewContextSettings and howToInterpret for these three
situations are as follows:

1. jseNewContextSettings:jseAllNew & ~jseNewSecurity
• howToInterpret: JSE_INTERPRET_CALL_MAIN |
• JSE_INTERPRET_NO_INHERIT
2. jseNewContextSettings: jseNewNone
• howToInterpret: JSE_INTERPRET_CALL_MAIN
3. jseNewContextSettings: jseNewFunctions
• howToInterpret: JSE_INTERPRET_CALL_MAIN

jseInterpInit(), jseInterpExec(), and
jseInterpTerm()

These three functions provide an alternate method for interpreting scripts. jseInterpret()
reads in a script, and then executes it statement by statement, calling
jseMayIContinueFunc after executing each statement. If you want greater control over
this procedure, you may use the three jseInterpXXX() functions.

jseInterpInit() complies the script into the interpreter. It takes the same parameters as
jseInterpret(). It does no script execution; it just initializes the script. jseInterpExec()
executes the next line of a script, and jseInterpTerm() is called when the script is to stop
execution. These latter two functions are only passed the jseContext.

Interpreting in pieces:
Once you have set up for an interpret session using jseInterpInit(), you actually execute
the ScriptEase statements using successive calls to jseInterpExec(). Initially, you pass the
context you received as a result of jseInterpInit(). You will be returned a new context that

Integrating the ISDK/C 51

you pass back to execute the next statement. Continue calling this function with the result
of the last call as the parameter.

When this function returns NULL, the interpret is complete. At this time, you call the
jseInterpTerm() function to clean everything up and get the return value.

If you call jseInterpret(), your 'MayIContinue' function is called after each statement. If
you use the jseInterpXXX() functions directly, your 'MayIContinue' statement is NOT
called. Instead, you may execute whatever code you like between successive calls to this
function. You may decide to discontinue executing code by calling jseInterpTerm() at
any time. If you do so, no return value can be given (the function always returns NULL).

Certain functions, due to the design of the interpreter, must be completely processed and
so are atomic to this function. This means that if you do a jseCallFunction() or access a
dynamic object, the statement will not be executed iteratively by your jseInterpExec() but
will be handled behind the scenes all at once. Thus, when you call jseInterpExec() in
these cases, many statements can be processed for your one call. In this case, your
MayIContinue() function WILL be called during these statements. Thus, you should
always have a valid MayIContinue() function.

jseInterpInit returns a new jsecontext. If it returns NULL, some error happened (like a
syntax error during parsing.) The error message will have already been printed. You can
trap this error by using the JSE_INTERPRET_TRAP_ERROR flag in the howToInterpret
settings. The returnVar parameter is provided for this case. It will be filled in with the
trapped error object. It is only used in this case; you can ignore it if you are not trapping
errors. If you do trap an error (i.e. it is not NULL, it must be destroyed when you are
done.)

You can trap any errors in the call to jseInterpTerm(), there being a boolean flag to do so.
If you don't, error messages will be printed and a NULL will be returned on error.
Otherwise, again, no message is printed and instead the error object is returned. You can
use jseQuitFlagged() before calling jseInterpTerm() to determine if the result will be an
error. If you are canceling the interpret as described above, this does not apply.

Exception Handling Via the API
In JavaScript, each function returns a value. This is done with the familiar 'return'
statement. If you 'return 10;', the result of the function is 10. What you might not know is
that actually the result is 10, plus an indication that no error occurred. Most JavaScript
users think that scripts can only return values, and that any errors immediately abort the
script. That is only an approximation that holds true most of the time. If you want to use
the advanced capabilities of the JavaScript language, you'll need to know how things are
actually happening under the hood.

52 ScriptEase ISDK/C

Most errors are generated internally by the engine, when bad code is executed. For
instance, if you try to access an undefined variable, an error occurs. JavaScript provides a
little-used 'throw' statement to raise your own errors. In either case, this is treated very
much like a 'return' statement, except that the value being returned is an error object (see
below for details of these) and the indication is that an error did occur. If the function has
a try/catch handler, it handles the error immediately instead of returning it. See the
manual chapter on statements for details on try/catch.

If there is no such handler, then the error is returned to its calling function, who then does
the exact same thing (either handling it or returning it to its caller.) Eventually, either
someone will have handled the error, or the top-level of the script is reached. If it gets all
the way to the top, and no one has handled the error, then the ScriptEase engine calls the
application's error handling routine (defined in the jseExternalLinkParameters). For most
applications, this just prints the error to the screen.

So, we can see that if no try/catch handlers are in place, then the behavior is what most
users expect, the script stops running and an error message is printed. If, however,
try/catch handlers are used, they can trap the error. In addition, the idea that an error is
just a normal return plus an indicator that this is in fact an error is important to the
ScriptEase API user, so keep it in mind below when we discuss the API.

What Is an Error?
Now that you know that an error is just a value returned that has the extra indication that
it is an error, what is the value itself? Well, in an object-oriented language like
JavaScript, it is not hard to guess that it is an object. In fact it is one of a number of
related types of objects defined by the ECMAScript version three draft. We have
SyntaxError, TypeError, EvalError, and several others. There is also a more generic Error
object. If you want to use the 'throw' statement to generate an error, you will generate one
of these kinds of errors. For instance,

throw new Error("13: This is not your lucky day!");

As was stated before, whenever a program error occurs, such as referencing an undefined
variable, the engine constructs the appropriate error object and 'throw's it itself. These
error objects, when converted to a string, all give a human-readable message that the
programmer can understand. For program-generated errors, the message includes the line
number and filename of the error.

Now, the tricky part is that you can 'throw' any value. You just normally throw one of the
error objects, because that is the accepted practice, and it is what other people will expect
you to do. Assuming your program does not trap the error, whatever value you throw will
be converted to a string and printed out as an error message. The user can only recognize
that an error occurs if the message makes it clear. Error objects get converted to a very
descriptive string that is obviously an error message. If you start throwing various values
that are not error objects, you'll make your users really confused. These will be converted

Integrating the ISDK/C 53

to a string and printed. The user may not even realize that it is an error! If you 'throw 10;',
'10' will be printed as the error message. Your user will be confused as to what is going
on. You are much better off always throwing error objects, not arbitrary values.

Creating Errors Via the API
Now that we understand errors from the script's perspective, what about from the API
user's perspective? When you are writing wrapper functions, you are used to using the
ScriptEase API call jseReturnVar() to return a value for that function. This is exactly like
using the script 'return' statement. If you want to generate an error, to mimic the script's
'throw' statement, you can also use jseReturnVar(). You call jseLibSetErrorFlag() to
indicate that this is an error return (i.e. a 'throw', not a 'return'.) However, doing this
means you must build an appropriate error object to return. Creating a new object from
the API can be a bit of a pain. It involves finding the constructor function you want to
call, setting up the stack with its parameters, calling the function and finally destroying
the stack.

Because this is such a common occurrence, we have a much simpler way to do it. You
use the jseLibErrorPrintf() routine. This one function wraps the functionality of both
jseReturnVar() and jseLibSetErrorFlag() into itself. You can pass a simple text string to
it, and it turns that into an appropriate error object and makes it the return of your
wrapper function. It also notifies the engine that an error has occurred, so after you call
jseLibErrorPrintf(), your can just return from your wrapper function. The error will be
passed back up the chain just like any other error, being trapped by a try/catch handler, or
printed out to the user is no handlers exist.

When using jseLibErrorPrintf, it is preferable to use the ScriptEase resource capabilities
to generate the error message, since then you do not have to worry about the format of the
error string. All of the standard library functions we provide have their error messages
generated this way, such as the standard ECMA functions in srclib/ecma/*.c. The file
srclib/common/setxtlib.h contains the resource definitions they use.

If you need to generate an error message by hand, the format of the string passed to
jseLibErrorPrintf is:

!type number: message

For instance,
!SyntaxError 1000: You did something wrong.

This functions just like the ScriptEase statement,
throw new SyntaxError("1000: You did something wrong.");

 Remember that after you call jseLibErrorPrintf(), it has the return value all set up to give
the engine the correct error. Make sure you do not then change it by calling
jseReturnVar(). You should usually immediately 'return' from your wrapper function
right after calling jseLibErrorPrintf. A few API function specify that if some parameters

54 ScriptEase ISDK/C

to them are wrong, an appropriate error message will be generated. For instance, if you
call jseFuncVar() trying to get a parameter out of range, then an error message will be
generated. Exactly the same thing applies, if these functions fail, you should immediately
return from your wrapper function. In case your wrapper function is complex, you can
check to make sure no error has been generated before you try to return a regular value
from it. Here is a short code example:

if(!jseQuitFlagged(jsecontext))

jseReturnVar(jsecontext,my_return_variable,jseRetTempVar
);
else
 jseDestroyVariable(jsecontext,my_return_variable);

Notice the 'else' clause in this example. In most cases you will be returning a variable
using the 'jseRetTempVar' option, which means that it is a variable you must destroy. By
returning it, you are effectively destroying it. If you do not return it, you will have to then
explicitly destroy it, as we have done in this example.

Catching and Propagating Errors
The ScriptEase API has two basic functions to actually execute code, jseInterpret() and
jseCallFunctionEx(). jseCallFunction() and jseInterpInit() et al are variations of these two
basic functions. Both of these represent the 'top-level' we talked about earlier when
discussing error handling. If the error reaches them, they usually print out the error and
return a boolean False to indicate that the function failed. They only return a result (by
filling in the return variable parameter) if the function succeeded. You can, however, trap
the errors with these calls. In this case, the return variable parameter is always filled in.
You still know whether that value is a normal successful return or an error return based
on the boolean return value of these functions. Read the API reference chapter for full
information on their parameters and returns.

Certain wrapper functions will use this functionality to execute a script and return its
result, even if it is an error. The ECMAScript eval() function (which we implement in
'srclib/ecma/ecmamisc.c') is a prime example. In this case, we simply set our API call to
trap the error, and return the result whatever it may be. If the call resulted in an error, we
also use the jseLibSetErrorFlag() API call to notify the engine of that.

Here is a simply wrapper function that demonstrates how an error can be passed along:

Integrating the ISDK/C 55

static jseLibFunc(example_wrapper)
{
jseVariable retvar;
jsebool waserror;

waserror = !jseInterpret(jsecontext,NULL,
 "var a = = 4;",
 /* this will cause a syntax

error */
 jseNewNone,
 JSE_INTERPRET_TRAP_ERRORS,
 NULL,
 &retvar);

jseReturnVar(jsecontext,retvar,jseRetTempVar);
if(waserror) jseLibSetErrorFlag(jsecontext);

}

Debugging
Once you get the ScriptEase ISDK integrated into your application, you can still have
problems. The most common is misusing the API, for example destroying a jseVariable
you were not supposed to. It is easy to make this and similar mistakes, so we've included
a number of debugging tools to make getting your application up and running with the
ScriptEase ISDK easier.

You'll need to turn debug support on while developing your application to get all of these
benefits. Remember to turn it all back off when everything is working. The ISDK in
debug mode is significantly slower and uses lots more memory to do all of its debug
tracking. Make sure that the macro 'NDEBUG' is not defined. This macro is the key to
determine which 'mode' (debug or release) the ScriptEase code is built in.

You'll also want to set your compiler to build a debug executable, to put full debugging
information into your executable. Note that the debug changes to the ScriptEase ISDK
core are compile-time, which means you'll need to recompile all ScriptEase files with
these new changes, including the ISDK core itself. We include debug versions of the
target files to compile the core, which you can use to build an appropriate build.

The first thing to note is that there are a lot of assert()s in the core, which are active in the
debug mode. If you trigger an assertion failure, you've found some problem, either
misusing the API, or a real bug in our code. In either case, the location of the assertion
and what you did to cause it are important pieces of information which we can use to
track down the problem.

JSEDEBUG.LOG
This is the name of the debug output file under DOS, Windows, or OS/2. For UNIX and
Mac versions, it is put in the current directory. The debug output will be put in this file,

56 ScriptEase ISDK/C

appended to whatever the file already contains. When trying to debug your program,
delete this file first, then run it, then read it to see what information it provides. Even if
this information is not enough for you to fix the problem, it will be helpful to us, so
include it when you contact Nombas for technical support.

JSE_TRACKVARS
The most common mistakes involving the ScriptEase API have to do with incorrectly
using jseVariables. When debugging mode is on, the macro JSE_TRACKVARS is
defined, which causes the core to keep very careful track of all jseVariables created or
looked up via API calls. This uses a significant amount of memory, but it is only meant
for debugging.

The benefit is that most bad uses of variables will be caught and immediately flagged. If
you pass a pointer to a jseVariable that is bad, or try to free a jseVariable you shouldn't,
or try to use a jseVariable you have already freed, this will immediately catch the mistake
and inform you of it. The majority of developer problems are of the kind that this setting
will catch. You will save a lot of time by making sure that the JSE_TRACKVARS debug
code does not catch any mistakes before you contact Nombas for support.

Memory Tracking
The second main benefit of the ScriptEase ISDK debug code is that it internally tracks all
memory allocated. When memory is allocated or freed, it is filled with garbage values, so
memory that is freed but later accessed will contain garbage, and thus be likely to cause
an immediate problem. If your program crashes, look at the data structure involved. If it
is working with a dynamically-allocated memory and has the hex value '0xEE' (for
instance, the pointer 0xEEEEEEEE), it is likely an uninitialized value, since all allocated
memory is filled with this value. If you instead find '0xBD' (or 0xBDBDBDBD as a
pointer), you are using memory that has since been freed. Of course, you'll then need to
track down why you are using bad memory, but at least you know that you are.

Second, on exit, all memory is examined, and if some memory was not freed, it will be
reported (in the 'jsedebug.log' file, described above.) Special markers are written before
and after each memory block, so if you have gone outside the bounds of the allocated
memory, this too will be caught. These reports tell you the file name and line number that
the memory was allocated on.

JSEMEMREPORT
Although pointer-bounds problems will be caught on exit, many times this mistake will
cause the program to crash long before exit. If you suspect the problem may be due to
memory corruption, put the call 'jseMemReport(False);' in your code before the crash (try
to make it as close to the crash as possible.) This causes all of the bounds-checks
described above to be made (it is a pretty slow call). However, if memory has been

Integrating the ISDK/C 57

corrupted, this call will usually find it. It is another good tool to help find memory
corruption problems.

JSEAPIOK
Do not always assume that the ScriptEase ISDK functions succeeded. One problem is to
assume a valid result from such a function when it failed, and then using that result,
which inevitably causes bad results and crashes. After any ScriptEase API call, you can
write the line 'assert(jseApiOK);'. If the call has failed, this assertion will trigger. You
can use the 'jseGetLastApiError()' call to get the message associated with the failure.

Common Mistakes
You must always pass the latest jseContext to each library function. The latest context is
passed to each call-back function of yours that we call (such as wrapper functions), you
need to use that. Don't revert back to some saved context in this situation, as this will
cause all kinds of problems. The jseContext is a chain of such contexts, and the core
expects to always be working with the last element in this chain. If you pass an older
context, presumably now in the middle of the chain, you can expect to crash the
ScriptEase core. If you must call an API function using a saved context, you can call the
API function 'jseCurrentContext()' to get the end of this chain, which is what you'll want
to actually pass to the API function.

Integrating the debugger with your
application

The Nombas debugger lets you step through a script line by line, keeping track of the
values of variables as they change. Debugging scripts is much easier with this tool.

There are two different ways the debugger can be used: locally and remotely.

• With local execution, the script and the debugger are running on the same machine.

• With remote execution, the application controlling the script communicates with the
debugger through a proxy, which runs it though the debugger. This allows you to
debug scripts that exist on a remote server.

58 ScriptEase ISDK/C

Types & Macros of the API 59

Types and Macros of the API
This is a list of types and macros used with the ScriptEase:ISDK.

jseActionFlags
DESCRIPTION A set of flags used in a number of ISDK functions to control their

behavior in the way variables are searched for and returned from the
function.

COMMENTS This type is used in such functions as jseMemberEx,
jseGetMemberEx, and jseFindVariable. It controls how the variable
is to be returned, and in the case of the member functions, additional
options for searching and creating. It is a set of some or all of the
following values OR'ed together:
jseCreateVar - If this flag is set, then the variable returned must be

explicitly destroyed with jseDestroyVariable(). If this flag is not
specified then the variable is tracked internally, and any
variable returned from these functions is added to a list of
variables to be destroyed when the current context is finished.
This can cause problems with long-running persistent contexts
because many temporary variables can be added without ever
being deleted.

jseDontCreateMember - This only applies to the member functions.
If it is set, NULL is returned instead of creating the member if it
does not exist. Thus, jseGetMember(jsecontext,var,name) is the
same as,
jseMemberEx(jsecontext,var,name,type,jseDontCreateMember)

jseDontSearchPrototype - This flag only applies to member
functions. By default any prototype of the object is searched
for members if it is not found in the object itself. If this flag is
set, no prototype searching is performed.

jseLockRead - This flag allows finer control over what the returned
variable looks like. By default, a reference is returned, and any
time a read or write occurs on that variable it must be de-
referenced, which could mean calling a dynamic property. If
this flag is set the variable is retrieved once when the function is
called, but it should only be used for reading from then on. If
the variable is found in a _prototype then a new variable is
created for writing as an immediate member of the object. If

60 ScriptEase ISDK/C

this is a dynamic object then a new variable is created and the
_put function will be called when this variable is destroyed
(destruction is explicit with jseCreateVar / jseDestroyVariable)
on implicit when this wrapper function returns. This flag and
jseLockWrite are mutually exclusive.

jseLockWrite - Similar to jseLockRead, but the variable is locked
for writing instead of reading.

SEE ALSO jseFindVariable, jseGetIndexMemberEx, jseGetMemberEx,
jseIndexMemberEx, jseMemberEx

jseApiOK
DESCRIPTION A macro used to check that API functions have completed

successfully.
COMMENTS This macro is used to check if an error occurred in API calls, i.e.,

incorrect jseVariables and jseContexts were passed. Its most common
use is during initial program development when it follows after an
ISDK call (or after a group of calls):
assert(jseApiOK);

SEE ALSO jseGetLastApiError

Types & Macros of the API 61

jseAppLinkFunc
DESCRIPTION This is the type of an user-supplied function provided in the

jseExternalLinkParameters structure. It is called by the ScriptEase
engine when jseAppExternalLinkRequest() is used to initialize a new
context.

SYNTAX typedef jseContext (*jseAppLinkFunc)(
 jseContext jsecontext,
 jsebool initialize);

PARAMETERS jseContext - The current executing context
initialize - A boolean value passed by the user through the

jseAppExternalLinkRequest() function signifying whether to
initialize a new context or terminate the current one.

COMMENTS This rarely used function is needed by library functions which require
a new context to be created from an existing context. This should
happen if a library were to create a new context (probably in a new
thread) for the application to initialize. The initialize parameter is
passed by the user. When creating a context, this value is True,
indicating that a new context should be created. Otherwise this should
be False, and the context should be terminated, usually with
jseTerminateExternalLink. When initialize is True, if NULL is
returned, it signifies to the engine that there was some sort of error.

RETURNS NULL on failure, otherwise a newly created jseContext

SEE ALSO jseAppExternalLinkRequest, jseExternalLinkParameters,
jseInitializeExternalLink, jseTerminateExternalLink

62 ScriptEase ISDK/C

jseAtErrorFunc
SYNTAX jseAtErrorFunc (jseContext jsecontext,

 struct AtErrorStruct *info)
RETURN void

DESCRIPTION jseAtErrorFunc is immediately called when an error is generated. A
structure is passed to it that has information about the error.

struct AtErrorStruct
{
 jseVariable errorVariable;
 jsebool trapped;
};

The first member is 'errorVariable'. This is the error being generated.
It is possible for this not to be an object, but it usually is. For instance,
'throw "foo";' will have the error variable be the string "foo". All error
objects can be transformed into strings using
'jseCreateConvertedVariable(...,jseToString)'.

The second member, ‘trapped’, determines whether or not the error
will be trapped.

Simply, if it is not trapped, your PrintError function (see
jsePrintErrorFunc) will be called immediately after the AtError
function. It means that no 'try/catch' handlers are in effect that could
possibly catch the error.

SEE ALSO jsePrintErrorFunc; “Error Handling” in the chapter, Integrating the
ISDK/C.

jseAtExitFunc
DESCRIPTION The type of an user-defined function passed to jseCallAtExit() which

is called when a context is being cleaned up.

SYNTAX typedef void (*jseAtExitFunc)(

 jseContext jsecontext,

 void *Param)

PARAMETERS ontext - The current executing context
m - The parameter passed to the jseCallAtExit() function.

COMMENTS This is the ScriptEase equivalent to the atexit() C function.

SEE ALSO jseCallAtExit

Types & Macros of the API 63

jseContext
DESCRIPTION Type which represents a calling context for parameters, returns, re-

entrance and multitasking.
SYNTAX typedef void * jseContext

COMMENTS This is the type of the first parameter for almost every
ScriptEase:Integration SDK function.

64 ScriptEase ISDK/C

jseConversionTarget
DESCRIPTION A value that represents a target for converting a variable to another

type.
COMMENTS This type is used in the function jseCreateConvertedVariable, where a

method of conversion is required. It can be one of the following
values:
jseToBoolean - Convert to a boolean value. The contents of the

variable depends on the original variable.
q jseTypeUndefined
q jseTypeNull
q jseTypeBoolean
q jseTypeBuffer
q jseTypeNumber
q jseTypeString
q jseTypeObject
q jseToBuffer - Convert to a buffer type. This conversion is

done in the same manner as jseToString, but it is converted to
an ASCII sequence of bytes, rather than a Unicode string.

jseToBytes - Convert to a buffer type, but instead of converting each
Unicode value to a corresponding ASCII value, a raw transfer of
data is done. That is, the Unicode string "Hi" would be
converted to the buffer '\0H\0i' or 'H\0i\0', depending on the
endianness of the system, and a floating point value would give
the actual bytes that share it rather than a test representation of
the value.

jseToInt32 - Convert to a 32-bit integer. This is done by converting
like jseToInteger does except the range of valid values is 0 to
0xfffffff.

jseToInteger - Convert to an integral type. The value is first
converted with jseToNumber. If the result is NaN, then return
+0. If the result is +0, -0, +inf, or -inf, return 0. Otherwise,
return sign(result) * floor(abs(result)). In other words, the value
-4.8 would be converted to -4, shortened to fit. Only values in
the range -0x80000000 to 0x7fffffff can be stored.

jseToNumber: Convert to a jseTypeNumber variable based on its
type as follows:

q jseTypeUndefine: NaN
q jseTypeNULL: +0
q jseTypeBoolean: The result is 1 if the argument is True. The

result is+0 if the argument is False.
q jseTypeBuffer: Same as jseTypeString
q jseTypeNumber: Same as original

Types & Macros of the API 65

q jseTypeString: The string is interpreted as a number, using a
complicated set of rules, which are intended to convert human-
readable number strings such as "45" and "-45.34" to numbers. If
there is an error converting the string to a number, then the result
is NaN. More information on these rules can be found in the
ECMAScript Language Specifications in section 9.3.

q jseTypeObject - Convert input using jseToPrimitive, then
convert result with jseToNumber, and return the result.

jseToObject - Convert to an Object. If the original type is
jseTypeNULL or jseTypeUndefined, then a runtime error is
generated. If the original type is an object, then no conversion is
done. Otherwise, the value is converted to the corresponding
object wrapper type (i.e. for jseTypeString, new String() will be
called with the value as the parameter).

jseToPrimitive - If the variable is any type but jseTypeObject, then
no conversion is done. Otherwise, the internal defaultValue()
function of the object is called and that value returned.

jseToString - Convert to a string based on the following table:
 jseTypeUndefined - "undefined"
 jseTypeNull - "NULL"
 jseTypeBoolean - If the argument is True, then the result is

"True", if the argument is False, then the result is "False".
 jseTypeString - No conversion done

jseTypeObject - Convert with jseToPrimitive on the object then
convert the result with jseToString

jseToUint16 - Convert to an unsigned 16-bit integer. Convert with
jseToInteger, and then preserve the least significant 16 bits as
an unsigned value.

jseToUint32 - Convert to an unsigned 32-bit integer. Convert with
jseToInt32, and then convert to be unsigned.

SEE ALSO jseCreateConvertedVariable, jseDataType

jseDataType
DESCRIPTION Data type which represents the script type of a jseVariable.
COMMENTS This type is used when getting the type of a variable or creating a new

variable of the specified type. This type can be one of these
predefined values:
jseTypeBoolean - A boolean value, representing either True or False
jseTypeBuffer - A buffer, which is an array of bytes. This differs

from jseTypeString in that strings can be Unicode if Unicode is

66 ScriptEase ISDK/C

enabled.
jseTypeNULL - A NULL value, similar to the C constant NULL.
jseTypeNumber - A number type, which can be either an integer or a

floating point value
jseTypeObject - An object, which can have any number of members

(properties).
jseTypeString - A string value.
jseTypeUndefined - An undefined value. This can occur in a number

of places, but most of the time it is when a variable has not been
declared, or if it has been explicitly set to (void 0).

SEE ALSO jseConvert, jseCreateVariable, jseGetType

jseErrorMessageFunc
DESCRIPTION The type of a function passed in the jseExternalLinkParameters

structure which is responsible for printing interpreter errors.
SYNTAX typedef void (*jseErrorMessageFunc) (

 jseContext jsecontext,
 const char *ErrorString);

PARAMETERS jseContext - The current executing context
ErrorString - A string which is the error to print

COMMENTS This function is called whenever there is an error in the interpreter,
either parsing or executing a script.

SEE ALSO jseExternalLinkParameters, jseInitializeExternalLink

jseExternalLibFunc
DESCRIPTION Prototype a ScriptEase wrapper function.
SYNTAX void

jseExternalLibFunc(string functionName);
COMMENTS This macro expands to:

void FAR_CALL
functionName(jseContext jsecontext);
Use it to write a wrapper function such as:
jseExternalLibFunc(myfunc)
{
 /* wrapper function */
}

RETURN None.

Types & Macros of the API 67

SEE ALSO jseFuncVarCount, jseGetFunction, jseFuncVarNeed

jseExternalLinkParameters
DESCRIPTION The type of a structure passed to jseInitializeExternalLink() which

provides a way to set options and pass needed functions to the
interpreter.

SYNTAX struct jseExternalLinkParameters {
 jseErrorMessageFunc PrintErrorFunc;
 jseFileFindFunc FileFindFunc;
 jseGetSourceFunc GetSourceFunc;
 jseMayIContinue MayIContinue;
 jseAppLinkFunc AppLinkFunc;
 const char * jseSecureCode;
 jseLinkOptions options;
 ulong hashTableSize;
};

COMMENTS This structure is a core part of the interpreter. It must be created and
passed to the interpreter through jseInitializeExternalLink() in order
for the interpreter to function properly. It has the following fields.

PrintErrorFunc - This function gets called whenever there is an
error with the interpreter, either parsing or executing a script.
If it is not supplied, then no action is taken when an error
occurs, besides the execution being stopped, no error message
will be printed. A default version of this function is provided
by Nombas, called ToolkitAppPrintError, and it is found in
srcapp\printerr.c.

FileFindFunc - This optional function is called by the interpreter
when it needs to find a file for inclusion (source files as well as
#links and #include files). This acts as a $PATH variable for
the interpreter. A default version of this function is provided
by Nombas called TookitAppFileSearch and is found in the
file srcapp\fsearch.c.

GetSourceFunc - This function is required by the interpreter and is
responsible for opening files found by the FileFindFunc,
reading lines, and closing files. A default version of this
function is provided by Nombas called
ToolkitAppGetSourceFunc and is found in the file
srcapp\getsource.c.

MayIContinue - This is an optional function and is only used by
jseInterpret(). When using the separate, iterative interpreter
functions (jseInterpInit(), jseInterpExec(), jseInterpTerm()),

68 ScriptEase ISDK/C

this function is not called. jseInterpret() calls this function
before each statement is executed. If this function returns
"False", execution is stopped.

AppLinkFunc - This optional function is used when
jseAppExternalLinkRequest() is called. It is responsible for
initializing the new context (adding any libraries, etc). This
allows a toolkit application to obtain a new, initialized context.

jseSecureCode - This null-terminated string is either a filename
pointing to a security file or a string containing ScriptEase
code to be loaded as a security filter.

options - A mask of options for the interpreter. See jseLinkOptions
for more information.

hashTableSize - The size of the internal string hash table used for
variable and property names. If this is set to 0, a reasonable
default value is used (256). If you are planning to use a great
number of strings (for variable or member names), then this
small number can cause performance problems and a larger
value should be used.

SEE ALSO jseAppLinkFunc, jseErrorMessageFunc, jseFileFindFunc,
jseGetExternalLinkParameters, jseGetSourceFunc,
jseInitializeExternalLink, jseLinkOptions, jseMayIContinueFunc,
jseTerminateExternalLink

jseFindFileFunc
DESCRIPTION This is a user-supplied function for use in the

jseExternalLinkParameters structure which is called when the
interpreter needs to find an #include or #link file, or when
jseInterpret() is called with a filename.

SYNTAX typedef jsebool (*jseFindFileFunc)
(jseContext jsecontext, const char *file, char *filePathResults, uint
filePathLen, jsebool findLink);

PARAMETERS jseContext - The current executing context
fileSpec - A NULL-terminated string representing a partial

representation of the file. This will be whatever was passed to
jseInterpret() or what was in the #include or #link spec.

FilePathResults - A buffer where the function can store the results
of the filefind, if a file was found. If this function returns True
then this will be the value passed to the jseGetSource()
function.

filePathLen - Size of the filePathResults buffer.
findLink - True if this was included with a #link directive, False

Types & Macros of the API 69

otherwise
COMMENTS This function is used to allow the application to adjust the file-

specification for a source file. Remember that this doesn't have to
be a real file, but can be whatever the application chooses to treat in
a file-like way. This function is called before the interpreter begins
reading from the source file passed to jseInterpret(), before reading
a file described by the #include directive, and before linking with a
file defined by the #link directive. Typically, this function will look
through paths and other stored values to translate a short file
specification into a full file name, similar to the $PATH
environment variable.

RETURN True if the file was found, False otherwise
SEE ALSO jseExternalLinkParameters, jseGetSoruceFunc,

jseInitializeExternalLink

jseFuncAttributes
DESCRIPTION A set of flags describing the attributes of a library function.
COMMENTS This OR'ed set of flags is the FuncAttributes member of the

jseFunctionDescription structure which is passed to jseAddLibrary().
The following flags are defined:
jseFunc_Default - Default behavior (no flags set)
jseFunc_PassByReference- All parameters passed to this function are

passed by reference. By default, variables are passed by value,
which means that a copy is made of each parameter before it is
passed for the function and any changes to it do not affect the
original. If this flag is set, any changes made to parameters affect
the original variables as well. This is equivalent to having an '&'
(signifying pass-by-reference) before each parameter passed to
the function.

jseFunc_Secure - If this flag is set, then it is always safe to call this
function. If this flag is not set and Security is enabled, then the
function must pass through the security filter.

SEE ALSO jseCreateWrapperFunction, jseFunctionDescription,
jseMemberWrapperFunction, jseVarAtributes

70 ScriptEase ISDK/C

jseFunctionDescription
DESCRIPTION A structure defining the way a library function acts. It is passed to

jseAddLibrary()
SYNTAX struct jseFunctionDescription {

 const char *FunctionName;
 jseLibraryFunction FuncPtr;
 sword8 MinVariableCount
 sword8 MaxVariableCount;
 jseVarAttributes VarAttributes;
 jseFuncAttributes FuncAttributes;
};

Types & Macros of the API 71

COMMENTS This structure must be used any time that a library function is to be
added to a jseContext. This structure should never be accessed
directly. There are a series of macros which expand into
corresponding jseFunctionDescription structures and provide a lot
more flexibility, as there are many instances of the
jseFunctionDescription structure. Many of these macros share
common parameters described here:
FunctionName - The name of the function as a string.
FuncPtr - A pointer to the wrapper function which will get called

when the user calls this function.
MinVariableCount - The minimum number of parameters that

need to be passed to this function.
MaxVariableCount - The maximum number of parameters that

need to be passed to this function. If this value is -1, there is
no limit on the number of parameters that can be passed. Also,
if jseOptIgnoreExtraParameters is set in the link options, then
this parameter is ignored as well, and any extra parameters are
ignored (not flagged as errors).

VarAttributes - A set of attributes for the function object (or other
variable when using the supplied macros).

FuncAttributes - A set of attributes of the function object.
This structure should never be accessed directly. Instead, the
following macros are defined (See the corresponding macro for a
description):
JSE_ATTRIBUTE() - Sets the attributes of a named variable
JSE_FUNC_END - Value that MUST be supplied at the end of any

table of jseFunctionDescription structures.
JSE_LIBOBJECT() - A library object and object. All subsequent

functions defined will be added to this object.
JSE_LIBMETHOD() - Creates a function of the specified name

that is a member of the current library object
JSE_PROTOMETH() - Creates a function .prototype.name in the

current library object.
JSE_VARASSIGN() - Assign to a member of the current library

object from an existing variable.
JSE_VARNUMBER() - Create a numeric member of the current

library object with the specified name and value.
JSE_VARSTRING() - Create a member of the current library

object with the specified name and value, resulting from
evaluating the string.

72 ScriptEase ISDK/C

EXAMPLE jsefloat pi = 3.1415;
static CONST_DATA(struct jseFunctionDescription)
 funcTable[] =
{ JSE_LIBOBJECT("foo",foo_construct,0,0,
 jseDefaultAttr, jseDefaultAttr),
 /* This creates a foo object, with the
 * specified function when it is
 * invoked as new foo()
 */
 JSE_LIBMETHOD("goo",goo_function,1,2,
 jseDontEnum|jseReadOnly,
 jseFunc_PassByReference),
 /* Create a function foo.goo() which
 * takes 1 or 2 parameters, is not
 * enumerated in the foo object, is
 * read only, and receives its
 * arguments by reference
 */
 JSE_PROTOMETH("boo",boo_function,1,-1,
 jseDontDelete,
 jseFunc_Secure),
 /* Create function foo.prototype.boo()
 * which can receive any number of
 * arguments greater than 0, cannot be
 * deleted from foo, and is secure
 */
 JSE_VARNUMBER("pi", &pi,jseReadOnly),
 /* Create read-only number 'foo-pi' with
 * value of 3.1415
 */
 JSE_VARSTRING("car","\"Ford\"",
 jseDefaultAttr),
 /* Create variable 'car' with string
 * value "Ford"
 */
 JSE_FUNC_END
 /* Special value to end table */
};

SEE ALSO jseAddLibrary, jseFuncAttributes, jseLibraryFunction,
jseVarAttributes, JSE_ATRIBUTE, JSE_FUNC_END,
JSE_LIBMETHOD, JSE_LIBOBJECT, JSE_PROTOMETH,
JSE_VARASSIGN, JSE_VARNUMBER, JSE_VARSTRING

Types & Macros of the API 73

jseGetSourceFunc
DESCRIPTION This is the type of user-supplied function for use in the

jseExternalLinkParameters structure which is called when a file
needs to be opened, closed, or read from. Nombas provides a default
version of this function called jseToolkitAppSource.

SYNTAX typedef jsebool (*jseGetSourceFunc)(
 jseContext jsecontext, struct jseToolkitAppSource
*ToolkitAppSource, jseToolkitAppSourceFlags flag);

PARAMETERS jseContext - The current executing context
ToolkitAppSource - A structure maintained by the user through

calls to this function to keep track of the state of open files.
flag - A flag describing the action to be taken by the function.

COMMENTS This function is used to perform all file I/O and is called by the
interpreter in one of three circumstances. The action to be taken is
specified by the flags parameter.
jseNewOpen - A new file needs to be opened for reading. The

'name' field of the ToolkitAppSource structure is the name of
the file (possibly in shortened form). When this function is
called, it must also allocate the 'code' field of the
jseToolkitAppSource structure, as the application is
responsible for maintaining this pointer. This function call
should also verify that the file is readable and store any
necessary data in the userdata field of the ToolkitAppSource
structure. If this function returns False, then no more calls to
the function are made with jseGetNext or jseClose, otherwise
these calls are guaranteed.

jseGetNext - Read in the next line of file. Set the "code" field to
point to the NULL-terminated line read. If there are no more
lines to read, then return False, in which case processing will
stop and the function will be called with the flag set to
jseClose. Otherwise, processing will continue as normal.

jseClose - This flag is set when a file has been successfully opened
and completely read (i.e. call with jseGetNext returned False).
This is the final call to this callback function, and any cleanup
should be done here, including freeing any memory allocated
for the 'code' field when jseOpen was called. The return value
is ignored.

RETURN True if the action was a success, False if it failed.

SEE ALSO jseExternalLink, jseInitializeExternalLink, jseToolkitAppSource,
jseToolkitAppSourceFlags

74 ScriptEase ISDK/C

jseInterpretMethod
DESCRIPTION A set of flags describing the method for interpreting scripts with

jseInterpret().
COMMENTS This data type can be any of the following types OR'ed together:

JSE_INTERPRET_NO_INHERIT - By default, all local
variables of the previous context become global variables of
the new context. That means that any with statements and the
activation object will be propagated and all of these variables
will appear as global variables to the program. Setting this
flag will turn off this behavior.

JSE_INTERPRET_CALL_MAIN - ECMAScript specifies that
any code outside of function definitions is the only code
executed, but many C programmers are accustomed to the
main() function being called first. If this flag is set, then the
main() function is called after any global initialization code.

JSE_INTERPRET_DEFAULT - The default interpret action. No
flags are set.

SEE ALSO jseInterpret, jseNewContextSettings

jseLibFunc
DESCRIPTION A macro which expands into a jseLibraryFunction of the specified

name.
SYNTAX jseLibFunc(name);

PARAMETERS name - The name of the library function to create.
COMMENTS This macro expands into the appropriate definition for a

jseLibraryFunction with the specified name. For example,
jseLibFunc(foo) would expand into (on some systems):
void _export _cdecl foo(jseContext jsecontext)
and on others to:
void foo(jseContext jsecontext)

EXAMPLE jseLibFunc(foo_function)
{
 jseVariable foo =
 jseFuncVar(jsecontext,0);
 /* etc etc */
}

SEE ALSO jseLibraryFunction

Types & Macros of the API 75

jseLibraryFunction
DESCRIPTION The type of library functions which are added through

jseAddLibrary() and subsequently called from scripts.
SYNTAX typedef void (*jseLibraryFunction)(

 jseContext jsecontext);
PARAMETERS jseContext - The current executing context
SEE ALSO jseLibFunc

jseLibraryInitFunction
DESCRIPTION An optional function passed to jseAddLibrary which is called when

initializing the library.
SYNTAX typedef void * (*jseLibraryInitFunction)(

 jseContext jsecontext,
 void _FAR_ *PreviousInstanceLibraryData);

PARAMETERS jseContext - The current executing context
PreviousIntanceLibraryData - The value the library returned the

last time this library was initialized within this context. The
first time this is called, it is set to the data passed through
jseAddLibrary().

COMMENTS This function is used to initialize any type of library-specific
structure that the library may need to access. For example, the
library may need to keep track of files opened. In this case they
may do something like this:
void _FAR_ *
myInitFunc(jseContext jsecontext,
 void _FAR_ *prev)
{
 return (void *) CreateNewFileList();
}
/* Later, in a library function */fileList =
(struct fileList *)
 jseLibraryData(jsecontext);
This structure can then be freed in the corresponding
jseLibraryTermFunction.

RETURN A void pointer which can later be accessed by any of the library
functions using jseLibraryData().

SEE ALSO jseAddLibrary, jseLibraryTermFunction

76 ScriptEase ISDK/C

jseLibraryTermFunction
DESCRIPTION An optional function passed to jseAddLibrary which is called when

terminating the library.
SYNTAX typedef void (*jseLibraryTermFunction)(

 jseContext jsecontext,
 void _FAR_ *InstanceData);

PARAMETERS jseContext - The current executing context
InstanceData - The data returned by the corresponding

jseLibraryInitFunction() call.
COMMENTS This function is called when the library is terminated. It can be

called multiple times, and every call to the jseLibraryInitFunction
will have a matching call to jseLibraryTermFunction. Any
initialization performed in the initialization function should be
cleaned up here.

SEE ALSO jseAddLibrary, jseLibraryInitFunction

jseLinkOptions
DESCRIPTION A type of a set of flags passed to jseInitializeExternalLink which

describe the language options for the interpreter.
COMMENTS jseOptDefault - Default behavior (no flags set)

jseOptDefaultCBehavior - If this flag is set, then functions
declared without using the 'function' keyword are by default
cfunctions.

jseOptDefaultLocalVars - By ECMAScript rules, if a variable is
used without an explicit declaration then it is a global variable.
This behavior can be changed by setting this flag, in which
case all variables declared in such a fashion are local variables
unless declared outside of any function.

jseOptIgnoreExtraParameters - If this option is set, any extra
parameters passed to a library function beyond the maximum
variable count are ignored. By default, this is an error. The
rest of the behavior relating to library functions (not passing
the minimum number, etc) remains unchanged.

jseOptLenientConversion - This is a flag which specifies a more
lenient method of converting variables, getting and putting
data in variables, and retrieving function arguments. The first
thing that it affects is in using jseFuncVarNeed or
jseVarNeed,. If the user uses the JSE_VN_CONVERT()
macro, then it is treated as if JSE_VN_ANY were specified in

Types & Macros of the API 77

the from field. In the following example:
var = jseFuncVarNeed(jsecontext,
 0,JSE_VN_CONVERT(
 JSE_VN_NUMBER,
 JSE_VN_STRING);
If jseOptLenientConversion is not specified and the user
passes anything but a number or a string, it is an error. If
jseOptLenientConversion is set, then any variable will be
converted to a string, in effect changing the
JSE_VN_NUMBER to JSE_VN_ANY.

The second way that jseOptLenientConversion affects the
ISDK is in the jseGetXXX and jsePutXXX functions.
Normally, if the ISDK user calls jsePutLong() on a non-
number (or boolean) variable, it is an API error. If this flag is
set then the variable is first converted into a number before the
data is put in the variable. In the jseGetLong() function, for
example, if the source variable is not a number and this flag is
not set, it is an API error. If jseOptLenientConversion is set,
then a copy of the variable is created, and that copy is
converted to a number by calling
jseCreateConvertedVariable() with jseToNumber. The
numeric value of this copy is returned as the result of the
jseGetLong() call. Note that if the ISDK user calls
jseGetString(), then a temporary variable is created (to be
destroyed when the context is destroyed) in order to ensure
that the data remains valid.

jseOptReqFunctionKeyword - If this flag is set, then any function
that is declared without the 'function' or 'cfunction' keyword is
a runtime error.

jseOptReqVarKeyword - Similar to the
jseOptReqFunctionKeyword flag, if this flag is set then any
variable that is used without first being declared with the var
keyword generates a runtime error.

jseOptToBooleanObjectEval - Without this flag, an object
converted to a boolean will always return true, even if that
object represents a false value (e.g., new Boolean(false)).
With this flag set, objects will be converted to boolean with
this logic: ToBoolean(ToPrimitive(object)).

jseOptWarnBadMath - If this flag is set, then any illegal math
operations (e.g. dividing by zero) will generate a runtime error.
By standard ECMAScript rules, such operations typically
return NaN, but no error is generated. This flag should be set
if you wish to flag such operations as errors.

78 ScriptEase ISDK/C

SEE ALSO jseExternalLinkParameters, jseGetExternalLinkParameters,
jseInitializeExternalLink

jseMayIContinueFunc
DESCRIPTION This is the type of a user-supplied function for use in the

jseExternalLinkParameters structure which is called by jseInterpret
before processing each statement to determine whether to continue.

SYNTAX typedef jsebool (*jseMayIContinueFunc)(
 jseContext jsecontext);

PARAMETERS jseContext - The current executing context
COMMENTS This function is provided by the user for use in jseInterpret. If the

user is using jseInterpExec/jseInterpTerm, then this function is not
necessary as these functions break after each jseInterpExec call.
However, when the user is using jseInterpret, this function is called
before each statement is processed. If it returns False, then
execution is immediately stopped and the jseInterpret call exits.
Otherwise, execution continues as normal. If the user does not
supply this function (i.e. this field is set to NULL in the
jseExternalLinkParameters structure), then it won't be called and
jseInterpret will act as if it always returned success.

SEE ALSO jseExternalLinkParameters, jseInitializeExternalLink, jseInterpExec,
jseInterpInit, jseInterpret, jseInterpTerm

Types & Macros of the API 79

jseNewContextSettings
DESCRIPTION A set of flags describing the settings for a new interpret through

jseInterpret().
COMMENTS This is an OR'ed mask of the following values:

jseAllNew - Everything created in this context is new and will be
destroyed when this context is terminated. All information in
the calling context will be preserved. Equivalent of setting all
of the other flags.

jseNewAtExit - Create new jseAtExit functions in addition to those
currently defined. These new functions will be called when
the new context is destroyed. If this flag is not set, any
jseAtExit functions will not be called into the calling context is
destroyed.

jseNewDefines - All defines within the new context are added in
addition to the current defines, but will be removed when the
new context is destroyed.

jseNewExtensionLib - Any link libraries used in the new context
will be unloaded when the context is destroyed, keeping the
original libraries intact.

jseNewFunctions - Any newly declared functions will be removed
when the context is destroyed.

jseNewGlobalObject - Create a new (blank) global object for this
context.

jseNewLibrary - Create new libraries. This re-initializes all of the
libraries added through jseAddLibrary() and calls their
respective initialization functions. These libraries are
unloaded when the new context is destroyed.

jseNewNone - Nothing is new. Everything that is created or added
will remain part of the original context, even after the new
context is destroyed. Equivalent to setting no flags.

jseNewSecurity - New security code. Any new security code added
will be removed when the new context is destroyed.

SEE ALSO jseInterpret, jseInterpretMethod

80 ScriptEase ISDK/C

jsePrintErrorFunc()
SYNTAX jsePrintErrorFunc (jseContext jsecontext,

 const char *ErrorString)
RETURN void

DESCRIPTION jsePrintErrorFunc is called by the interpreter when a script encounters
an untrapped error condition, either parsing or executing a script.

errorString is the message associated with the error.

If this function is set to NULL in your External Parameters structure,
no error messages will be printed. This would make running and
debugging scripts very difficult, so you almost always should provide
a print error function.

Nombas provides a default version of this function, called
ToolkitAppFileSearch, which is found in the file srcapp\fsearch.c. Be
sure to include the header file fsearch.h for a prototype of this
function (This header is automatically included with seall.h).

SEE ALSO jseAtErrorFunc

jseReturnAction
DESCRIPTION The method of returning a jseVariable from a wrapper function.
COMMENTS This can be one of the following values:

jseRetCopyToTempVar - The interpreter will create a new
variable, copy to that variable (with jseAssign()), and return
the newly created variable. The original variable remains
unchanged.

jseKeepLVar - Return a variable that is not to be destroyed when
the interpreter is finished with it. This may be because you are
returning a variable that was passed as a parameter to your
function or the result of a JseMember() call or any other
variable that you do not have a lock on (see
jseCreateSiblingVariable()).

jseRetTempVar - The variable to be returned will be destroyed by
the interpreter when it is no longer needed. This is the most
common option, and used when a wrapper function creates a
variable to return.

SEE ALSO jseReturnVariable

Types & Macros of the API 81

jseStack
DESCRIPTION Type represents a handle to a jseStack for passing parameters using

jseCallFunction.
SEE ALSO jseCreateStack, jseDestroyStack, jsePush, jseCallFunction

jseToolkitAppSource
DESCRIPTION The type of a structure used to maintain the status of open files and

manage file I/O through the jseGetSourceFunc supplied in the
jseExternalLinkParameters structure.

SYNTAX struct ToolkitAppSource
{
 char * code;
 const char * const name;
 uint lineNumber;
 void * userdata;
}

COMMENTS A structure of this type is passed with every call to
jseGetSourceFunc, and file information is shared between that
function and the core. In particular, it is used to maintain the state
of open files and pass back information read from these files. It has
the following fields:

code - The application is responsible for maintaining this field. It
should be allocated and freed when the function is called with
jseNewOpen and jseClose. When the jseGetSourceFunc is
called with jseGetNext, this field should be filled with a '\0'-
terminated string containing the next line read from the file.

name - The name of the source file as returned from calling the
jseFileFindFunc in the jseExternalLinkParameters structure.
The application must not modify this field.

lineNumber - The application can both read to and write from this
value. This value is used in error reporting and debugging
within the core. This value is initialized to 0 before calling the
jseGetSourceFunc with jseNewOpen, and is automatically
incremented by one before each call with jseGetNext, so the
user need not modify this value if each subsequent call
represents the next higher line number.

userdata - This data is reserved for the application and can be used
in any manner. Typically it is initialized in jseNewOpen and
freed in jseClose and is used to maintain information about the

82 ScriptEase ISDK/C

file (for example, the FILE pointer returned from fopen).
SEE ALSO jseExternalLinkParameters, jseGetSourceFunc,

jseInitializeExternalLink

jseToolkitAppSourceFlags
DESCRIPTION The type of one of three values passed to the ToolkitAppSource

function in the jseExternalParameters structure passed to
jseInitializeExternalLink().

COMMENTS This can be one of the following values. See the description of
jseGetSourceFunc for a description of the action to be taken for
each value:
jseNewOpen - Open a new file.
jseGetNext - Get next line from a file.
jseClose - Close a file.

SEE ALSO jseGetSourceFunc

jseVarAttributes
DESCRIPTION The type of a mask of attributes for a jseVariable.
COMMENTS This is an OR'ed set of flags describing the attributes of the variable.

The flags are as follows:
jseDefaultAttr - The default attributes are used (no flags are set)
jseDontDelete - This variable cannot be deleted. If, within a script,

the user calls 'delete [variable]', then no action is taken. This
does not affect calls to jseDeleteMember().

jseDontEnum - This variable is not enumerated within for . . . in
loops. Therefore, if it is a member of an object and the user
enumerates the members of the object using a for . . . in loop,
this member will be skipped. jseGetNextMember() always
returns all members.

jseImplicitParents - This is an attribute that applies only to local
functions. It allows the scope chain to be altered based on the
__parent__ property of the 'this' variable. If this flag is set, the
__parent__ property is present, and a variable is not found in
the local variable context (activation object), then the parents of
the 'this' variable are searched (as long as there is a __parent__
property) before searching the global object.

Here is an example, assuming that jseImplicitParents is set on
function foo().

 var a;

Types & Macros of the API 83

 a.value = 4;
 var b;
 b.__parent__ = a;
 b.foo = foo;
 b.foo();
 function foo()
 {
 value = 5;
 // This will actually set a.value to 5
 }
jseImplicitThis - This attribute applies only to local (script)

functions. If this flag is set, then the 'this' variable is inserted
into the scope chain before the activation object. This means
that if a variable is not found in the local variable context
(activation object), the interpreter will then search in the current
'this' variable of the function.

jseReadOnly - This is a read-only variable. Any attempt to write to
the variable will fail (nothing will happen).

SEE ALSO jseCreateWrapperFunction, jseFunctionAttributes,
jseFunctiondescription, jseGetAttributes,
jseMemberWrapperFunction, jseSetAttributes

jseVariable
DESCRIPTION Type of a handle to a jseVariable

jseVarNeeded
DESCRIPTION The type of a mask of flags indicating the type of variable needed,

and any conversion that should be done
COMMENTS This value differs from jseDataType in that this is a set of flags,

rather then specific values. Be sure to use jseVarNeeded when it is
supposed to be used, and not jseDataType. There are also several
important features of jseVarNeeded that allow for implicit
conversion. The following are acceptable types:
JSE_VN_ANY - Any data type is acceptable.
JSE_VN_BOOLEAN - Only Boolean values are accepted
JSE_VN_BUFFER - Only Buffer type variables are accepted
JSE_VN_BYTE - Only integers between 0 and 255 (one byte) are

accepted.

84 ScriptEase ISDK/C

JSE_VN_CONVERT() - A macro which greatly expands the
capability of jseVarNeeded and allows for conversion.

JSE_VN_COPYCONVERT - A flag that means to create a copy
of the variable and use that rather than the original if the
variable must be converted. This is only useful when using the
JSE_VN_CONVERT() macro and pass-by-reference, because
in this instance you may want a converted variable, but you do
not want to change the original to the new type.

JSE_VN_FUNCTION - A case of JSE_VN_OBJECT types in
which only function objects are accepted.

JSE_VN_INT - Only numbers which are integer values are
accepted (i.e. can be converted to an integer with no loss of
precision).

JSE_VN_NOT() - A macro which means 'anything but'. See the
JSE_VN_NOT() macro on page for more information.

JSE_VN_NULL - Only NULL type variables are accepted
JSE_VN_NUMBER - Only Number variables are accepted
JSE_VN_OBJECT - Only Objects are accepted
JSE_VN_STRING - Only String variables are accepted
JSE_VN_UNDEFINED - Only Undefined variables are accepted.

Here are some examples of usage. See the JSE_VN_CONVERT()
macro and JSE_VN_NOT() macro for more information on how
those macros work.
 JSE_VN_NULL
 /* Only NULL values */
 JSE_VN_NULL|JSE_VN_NUMBER
 /* NULL or Number values */
 JSE_VN_NOT(JSE_VN_STRING)
 /* All types except Strings */
 JSE_VN_CONVERT(JSE_VN_BUFFER|
 JSE_VN_STRING,JSE_VN_NUMBER)
 /* Accept Strings, buffers, or numbers
 * Strings and buffers are converted
 * to numbers first.
 */
 JSE_VN_CONVERT(JSE_VN_STRING,
 JSE_VN_BUFFER)|JSE_VN_COPYCONVERT
 /* String or buffer, convert String
 * to buffer and copy it, in case it
 * was passed by reference
 */

Types & Macros of the API 85

SEE ALSO jseDataType, jseFuncVarNeed, jseVarNeed, JSE_VN_CONVERT,
JSE_VN_NOT

JSE_ATTRIBUTE
DESCRIPTION Macro to create a jseFunctionDescription structure which, when

loaded, will set the attributes of the member of the current library
object with the specified name.

SYNTAX struct jseFunctiondescription
JSE_ ATTRIBUTE (
 const char *name,
 jseVarAttributes varAttributes)

PARAMETERS name - The name of the member of the current library object.
varAttributes - See jseFunctionDescription

COMMENTS When loaded, this function description will set the attributes of the
member to varAttributes.

EXAMPLE See jseFunctionDescription.

RETURNS jseFunctionDescription structure describing this action.

SEE ALSO jseFunctionDescription

JSECALLFUNCTION
DESCRIPTION jseCallFunction() is now a macro to call jseCallFunctionEx() with

JSE_FUNC_DEFAULT as the flags:

SYNTAX #define JSE_FUNC_DEFAULT 0x00
#define JSE_FUNC_TRAP_ERRORS 0x01

Exactly analogous to JSE_INTERPRET_TRAP_ERRORS.

#define JSE_FUNC_CONSTRUCT 0x02

See jseCallFunctionEx() below for details.

JSECALLSEQ(jsebool) jseCallFunctionEx(
 jseContext jsecontext,
 jseVariable jsefunc,
 jseStack jsestack,
 jseVariable *returnVar,
 jseVariable thisVar,
 uint flags);

86 ScriptEase ISDK/C

COMMENTS The given 'jsefunc' is a jseTypeObject jseVariable that must be a
function. For all possible errors, if JSE_FUNC_TRAP_ERRORS is
set, an appropriate Exception object will be returned. If it isn't defined,
then 'returnVar' will be NULL and an error message will have been
printed (using the normal Error printing scheme.) The jseStack
contains the parameters to be passed to the given function. The
'thisVar' is a jseVariable to be given to the function as the 'this'
variable. If it is NULL, the global object will be passed. If just calling
a function, use NULL. When trying to call a particular Object's
member function (for instance, the 'toString' method of an object),
you'll want to pass that Object as the 'thisVar'

Note that even with JSE_FUNC_TRAP_ERRORS, the return can be
NULL if you called the function illegally (such as 'jsefunc' not being a
function.) Use jseGetLastApiError() to find the problem.

The JSE_FUNC_CONSTRUCT flag will allow you to call a
constructor. The given 'jsefunc' must actually have a constructor
associated with it, else an error will be generated. In this case, the
'thisVar' is ignored, since a call to a constructor generates a new
Object for that constructor to fill in.

When calling an Object's member function, use jseGetMember() to get
the jseVariable associated with the function you'd like to call. When
trying to call a generic function or constructor, it is usually easiest to
use jseFindVariable() to look up a function you'd like to call.

As a convenience, the 'jsestack' can be NULL if there are no
parameters to be passed to the function.

JSE_ENGINE_VERSION_ID
DESCRIPTION A predefined value representing the current version of the ISDK, used

to check the value returned from jseInitializeEngine().
COMMENTS This value represents the current version of the ISDK, and is used to

check that the engine version is the same as the expected value.
Typically, this will appear as follows:
if(JSE_ENGINE_VERSION_ID !=
 jseInitializeEngine())
 PrintError("Wrong version of ISDK!");

SEE ALSO jseInitializeEngine

Types & Macros of the API 87

JSE_FUNC_END
DESCRIPTION Macro which returns a jseFunctionDescription structure signifying

the end of a description table.
SYNTAX JSE_FUNC_END

EXAMPLE See jseFunctionDescription.
RETURNS jseFunctionDescription structure signifying end.
SEE ALSO jseFunctionDescription

JSE_LIBOBJECT
DESCRIPTION Macro to create a jseFunctionDescription structure describing an

object.
SYNTAX struct jseFunctionDescription

JSE_LIBOBJECT(
 const char *name,
 jseLibraryFunction callFunction,
 sword8 MinVariableCount,
 sword8 MaxVariableCount,
 jseVarAttributes varAttributes,
 jseFuncAttributes funcAttributes)

PARAMETERS name - The name of the object to create
callFunction - The library function to call when the object is

instantiated by calling name as a function (i.e. new name()).
MinVariableCount - See jseFunctionDescription
MaxVariableCount - See jseFunctionDescription
varAttributes - See jseFunctionDescription
funcAttributes - See jseFunctionDescription

COMMENTS After using JSE_LIBOBJECT() within a function description table,
every subsequent call to JSE_LIBMETHOD(),
JSE_PROTOMETH(), JSE_VARASSIGN(), JSE_VARSTRING(),
and JSE_VARNUMBER() will use this object to add to.

EXAMPLE See jseFunctionDescription.
RETURNS jseFunctionDescription structure describing this object.
SEE ALSO jseFunctionDescription

88 ScriptEase ISDK/C

JSE_LIBMETHOD
DESCRIPTION Macro to create a jseFunctionDescription structure describing a

function method
SYNTAX struct jseFunctiondescription

JSE_LIBMETHOD(
 const char *name,
 jseLibraryFunction function,
 sword8 MinVariableCount,
 sword8 MaxVariableCount,
 jseVarAttributes varAttributes,
 jseFuncAttributes funcAttributes)

PARAMETERS name - See jseFunctionDescription
function - See jseFunctionDescription
MinVariableCount - See jseFunctionDescription
MaxVariableCount - See jseFunctionDescription
varAttributes - See jseFunctionDescription
funcAttributes - See jseFunctionDescription

COMMENTS This macro will add the function to the current library object, either
the one created with the last call to JSE_LIBOBJECT, or if that has
not been used yet in the table, the object supplied with
jseAddLibrary().

EXAMPLE See jseFunctionDescription.
RETURNS jseFunctionDescription structure describing this function.
SEE ALSO jseFunctionDescription

Types & Macros of the API 89

JSE_PROTOMETH
DESCRIPTION Macro to create a jseFunctionDescription structure describing a

prototype function
SYNTAX struct jseFunctionDescription

JSE_PROTOMETH(
 const char *name,
 jseLibraryFunction function,
 sword8 MinVariableCount,
 sword8 MaxVariableCount,
 jseVarAttributes varAttributes,
 jseFuncAttributes funcAttributes)

PARAMETERS name - See jseFunctionDescription
function - See jseFunctionDescription
MinVariableCount - See jseFunctionDescription
MaxVariableCount - See jseFunctionDescription
varAttributes - See jseFunctionDescription
funcAttributes - See jseFunctionDescription

COMMENTS This macro will add the function to the prototype of the current
library object, either the one created with the last call to
JSE_LIBOBJECT, or if that has not been used yet in the table, the
object supplied with jseAddLibrary(). This is equivalent to
'.prototype.name' of the current object.

EXAMPLE See jseFunctionDescription.
RETURNS jseFunctionDescription structure describing this function.
SEE ALSO jseFunctionDescription

90 ScriptEase ISDK/C

JSE_VARASSIGN
DESCRIPTION Macro to create a jseFunctionDescription structure which, when

loaded, will assign to a member of the current object from a global
variable.

SYNTAX struct jseFunctiondescription
JSE_VARASSIGN(
 const char *memberName,
 const char *globalName,
 jseVarAttributes varAttributes)

PARAMETERS memberName - The name of the member of the current library
object to assign to.

globalName - The name of the global variable to assign from.
varAttributes - See jseFunctionDescription

COMMENTS When loaded, this function description will perform the assign as if
the statement "[libobject].memberName = globalName" had been
executed within a script.

EXAMPLE See jseFunctionDescription.
RETURNS jseFunctionDescription structure describing this action.
SEE ALSO See jseFunctionDescription

Types & Macros of the API 91

JSE_VARSTRING
DESCRIPTION Macro to create a jseFunctionDescription structure which, when

loaded, will create a member of the current library object with the
specified string evaluated as its value.

SYNTAX struct jseFunctiondescription
JSE_VARSTRING(
 const char *name,
 const char *evalstring,
 jseVarAttributes varAttributes)

PARAMETERS name - The name of the member of the current library object to
assign to.evalstring - The string to be evaluated and assigned
to the member.

varAttributes - See jseFunctionDescription
COMMENTS When loaded, this function description will perform the assign as if

the statement ' [libobject].name = "string" ' had been executed
within a script.

EXAMPLE See jseFunctionDescription.
RETURNS jseFunctionDescription structure describing this action.
SEE ALSO jseFunctionDescription

92 ScriptEase ISDK/C

JSE_VARNUMBER
DESCRIPTION Macro to create a jseFunctionDescription structure which, when

loaded, will create a member of the current library object with the
specified number as its value.

SYNTAX struct jseFunctionDescription
JSE_ VARNUMBER(
 const char *name,
 jsenumber *number,
 jseVarAttributes varAttributes)

PARAMETERS name - The name of the member of the current library object to
assign to.

number - A pointer to the number value to assign to the member.
varAttributes - See jseFunctionDescription

COMMENTS When loaded, this function description will assign the value pointed
to by number to the member.

EXAMPLE See jseFunctionDescription.
RETURNS jseFunctionDescription structure describing this action.
SEE ALSO jseFunctionDescription

Types & Macros of the API 93

JSE_VN_CONVERT
DESCRIPTION Macro to create a jseVarNeeded set of flags describing a

conversion to be performed.
SYNTAX jseVarNeeded

JSE_VN_CONVERT(
 jseVarNeeded sourceTypes,
 jseVarNeeded destType)

PARAMETERS sourceTypes - OR'ed set of jseVarNeeded flags representing the
acceptable source types for conversion.

destType - A jseVarNeeded flag representing the destination type
to convert to.

COMMENTS The JSE_VN_CONVERT() macro expands the capability of the
jseVarNeeded flags to perform automatic conversion between
types. See the jseVarNeeded type for more information on these
flags. If the variable to be retrieved matches one of the flags in
sourceTypes, then it is converted to the destType. This conversion
is done in-place, converting the original variable, unless
JSE_VN_COPYCONVERT is OR'ed with the
JSE_VN_CONVERT() macro (see jseVarNeeded description).
The conversion happens in the standard ECMAScript manner,
calling jseCreateConvertedVariable() with the appropriate
jseConversionTarget type. The result replaces the original unless
JSE_VN_COPYCONVERT is OR'ed in to the flag set. If the
jseOptLenientConversion flag is set in the jseLinkOptions of the
current context, then the sourceTypes field is assumed to be
JSE_VN_ANY, regardless of what is specified. Also, only basic
types are allowed as parameters to JSE_VN_CONVERT(). That
means the following jseVarNeeded values are unacceptable:
JSE_VN_FUNCTION, JSE_VN_BYTE, JSE_VN_INT,
JSE_VN_COPYCONVERT. This means you cannot call
JSE_VN_CONVERT(JSE_VN_INT,JSE_VN_STRING). You
must use JSE_VN_NUMBER instead.

EXAMPLE See jseVarNeeded.
SEE ALSO jseFuncVarNeed, jseVarNeed, jseVarNeeded, JSE_VN_NOT

94 ScriptEase ISDK/C

JSE_VN_NOT
DESCRIPTION Macro to create a set of jseVarNeeded flags to represent every type

except for the ones specified as parameters.
SYNTAX jseVarNeeded

JSE_VN_NOT(jseVarNeeded types)
PARAMETERS types - An OR'ed set of jseVarNeeded flags to exclude from the

resulting jseVarNeeded
COMMENTS This is equivalent to specifying JSE_VN_ANY without the

specified types.
EXAMPLE See jseVarNeeded.
SEE ALSO jseFuncVarNeed, jseVarNeed, jseVarNeeded, JSE_VN_CONVERT

API Functions 95

API Functions
The following functions call APIs make up the ScriptEase:ISDK:

jseActivationObject
DESCRIPTION Get the local variable object for the function currently being executed.

SYNTAX jseVariable
jseActivationObject(jseContext jsecontext);

COMMENTS jseContext - The current executing context

RETURN This function returns the current activation object, or local variable
object, of the last local (script) function. Thus the local variable "a" of
the last script function would be a member of this object.

SEE ALSO jseGlobalObject

jseAddLibrary
DESCRIPTION Add an external function library to a given jseContext.

SYNTAX void
jseAddLibrary(jseContext jsecontext,
 const jsechar * objectVariableName
 const struct jseFunctiondescription
 *functionTable,
 void *InitLibData,
 jseLibraryInitFunction
 libInitFunction,
 jseLibraryTermFunction
 libTermFunction);

96 ScriptEase ISDK/C

PARAMETERS jseContext - The current executing context
objectVariableName - The name of the object the properties will be

associated with. If NULL is supplied in this field, then the global
object will be used.

functionTable - An array of function descriptions to add to the
context.

initLibData - This data is passed the first time that the libInitFunction
is called. Most of the time this can be set to NULL unless you
have special needs. If libInitFunction is NULL this will also be
the data available to each library function via jseLibraryData().

libInitFunction - This function will be called each time the library is
loaded (which could occur more than once if jseInterpret is called
with the appropriate settings). The pointer this function returns is
available to all wrapper functions via jseLibraryData().

libTermFunction - This function will be called when the library is
being unloaded, which means that it is no longer being used.
Again, this could happen more than once.

COMMENTS Use this function to add library functions to the jseContext. A static
table of jseFunctionDescription structures is defined, and this table is
passed as the second parameter to the function. Here is an example of
usage:
static struct
CONST_DATA(struct jseFunctiondescription)
 myFuncs[] =
{
 JSE_LIBMETHOD("foo",fooFunc,0,0, jseDefaultAttr,
 jseDeafultAttr),
 JSE_FUNC_END
};

/* Add some initialization function */
jseAddLibrary(jsecontext,"myFuncs",
 myFuncs,NULL,NULL,NULL);
.

RETURN None.

SEE ALSO jseFunctionDescription, jseLibraryData, jseLibraryInitFunction,
jseLibraryTermFunction

API Functions 97

jseAppExternalLinkRequest
DESCRIPTION Create a new jseContext using the jseAppLinkFunc provided in the

jseExternalLinkParameters structure.

SYNTAX jsecontext
jseAppExternalLinkRequest(jseContext jsecontext,
 jsebool Initialize)

PARAMETERS jseContext - The current executing context.
Initialize - The second initialization parameter passed to the AppLink

function.
COMMENTS If the user provides a jseAppLinkFunction when initializing the

jseExternalLinkParameters structure, this function will just pass the
call along and retrieve a new jseContext that is your function's return.
This function should first be called with True as the second parameter
to initialize a new context and then be called a second time with False
in order to clean up the returned context.

EXAMPLE newcontext = jseAppExternalLinkRequest(jsecontext,
 True);
if(newcontext == NULL)
 PrintError("Initialization failed");
 /* ... Use the new context here ... */
 (jseAppExternalLinkRequest(newcontext, False);

RETURNS NULL on failure, otherwise a valid jseContext.

NOTE This function is not used frequently; usually if a link library forces an
interpret in a new context initialized in an application-defined way.

SEE ALSO jseAppLinkFunc, jseExternalLinkParameters, jseInitializeExternalLink

jseAssign
DESCRIPTION Copy the current value of one variable to another.

SYNTAX jsebool
jseAssign(jseContext jsecontext,
 jseVariable destVar,
 jseVariable srcVar);

98 ScriptEase ISDK/C

PARAMETERS jseContext - The current executing context

destVar - The ScriptEase variable to set

srcVar - The ScriptEase variable to assign from.

This function assigns the value of the ScriptEase data defined by
destVar to be equivalent to the value of the ScriptEase data defined by
srcVar. The result of this function is the type of operation performed
by the ' = ' operator.

RETURN return boolean True for success, else return False if the assignment
was unsuccessful.

SEE ALSO jseGetType, jseConvert, jseCreateConvertedVariable

jseBreakpointTest
DESCRIPTION Test to see if the current line is a valid breakpoint.

SYNTAX jsebool
jseBreakpointTest(jseContext jsecontext,
 const char *FileName,
 uword32 lineNumber);

PARAMETERS jseContext - The current executing context
FileName - Name of the file to be tested.
LineNumber - The line number to check for breakpoint

COMMENTS Check if currently-running script thinks it has a breakpoint in this file
at this lineNumber. This function is provided to facilitate debugging.

RETURN return True if on a valid breakpoint, else return False.

SEE ALSO jseLocateSource

jseCallAtExit
DESCRIPTION Add a function to be called when exiting a jseContext

SYNTAX void
jseCallAtExit(jseContext jsecontext,
 jseAtExitFunc exitFunction,
 void *param);

PARAMETERS jseContext - The current executing context
exitFunction - The function to call at exit.
param - A parameter to give to the atexit() function when it is called.

API Functions 99

COMMENTS This function sets a function to be called when a top-level interpreted
jseContext is destroyed, similar to the C function atexit(). Any number
of functions may be registered with jseCallAtExit(); they will be called
in the reverse order in which they're added. At-exit functions are called
regardless of the reason for the exit. If an error condition exists, the
error flag will be turned off while calling these functions. These
functions will be called before any libraries added with jseAddLibrary
are terminated.

RETURN None.

SEE ALSO jseAtExitFunc

jseCallFunction
DESCRIPTION Call a ScriptEase function.

SYNTAX jsebool
jseCallFunction(jseContext jsecontext,
 jseVariable jsefunction,
 jseStack jsestack,
 jseVariable *returnVar,
 jseVariable thisVar);

PARAMETERS jseContext - The jseContext in which to call the specified function.
jsefunction - The jseVariable to the specified ScriptEase function.
jsestack - The parameters to pass to the specified function.
returnVar - A pointer to a jseVariable which will be filled in with the

return variable from the function. This variable should not be
created beforehand with jseCreateVariable(), as it will be
replaced, and will cause a memory leak. Also, this variable will
automatically be destroyed when the stack is destroyed (unless
explicitly popped off the stack).

thisVar - The jseVariable to be used as the 'this' var; use NULL for the
global object.

COMMENTS This function is used to make a call to a ScriptEase function from
within your application. The function passed in the jsefunction
parameter is typically a value returned from jseGetFunction.

RETURN returns True if the call was successful, False otherwise. The context
error flag will have been cleared when this function returns. Therefore
one should use this return value to determine if the function failed.

SEE ALSO jseCurrentFunctionName, jseGetFunction, jseCreateStack,
jseDestroyStack, jsePush

100 ScriptEase ISDK/C

jseClearApiError
DESCRIPTION Clear error message set by failed API call.

SYNTAX void
jseClearApiError()

COMMENTS If one of the API calls fails (if an incorrect parameter type was passed,
for example), it will set an error message explaining the reason for the
failure. This function erases the error message.

SEE ALSO jseApiError, jseGetLastApiError

jseCompare
DESCRIPTION Compare two script variables for greater-than, less-than or equal

comparison.

SYNTAX jsebool
jseCompare(jseContext jsecontext
 jseVariable variable1,
 jseVariable variable2,
 slong *compareResult);

PARAMETERS jseContext - The current executing context
variable1 - The first variable to compare.
variable2 - The second variable to compare.
compareResult - On return, this variable will be set to:

 < 0 if variable 1 is less than variable 2
 0 if variable 1 is equal to variable 2
 > 0 if variable 1 is greater than variable 2

COMMENTS This routine compares two jseVariables. In its most basic form, it
simply compares if two variables are equal, in that the data they
contain are equivalent, or that they point to the same object. In
addition, one of the following predefined values can be passed as
compareResult to use the standard ECMAScript comparison
routines:

JSE_COMPEQUAL - Compare using ECMAScript equality rules.
JSE_COMPLESS - Compare using ECMAScript less-than rules

(different from equality rules).
Typically, to do ECMAScript comparisons, the user should never call
this function directly. Use the functions jseCompareLess() and
jseCompareEquality(), which map to the equivalent flags above.

RETURN In a standard comparison, indicates whether the comparison was
successful. When using JSE_COMPEQUAL, returns a boolean value

API Functions 101

as to whether the two variables are equal. When using
JSE_COMPLESS, returns a boolean value as to whether the first
variable is less than the second variable.

SEE ALSO jseEvaluateBoolean, jseAssign, jseCompareLess, jseCompareEquality

jseCompareEquality
DESCRIPTION Compare two script variables for equality using ECMAScript rules.

SYNTAX jsebool
jseCompareEquality(jseContext jsecontext
 jseVariable variable1,
 jseVariable variable2);

PARAMETERS jseContext - The relevant jseContext.
variable1 - The first variable to compare.
variable2 - The second variable to compare.

COMMENTS This function is equivalent to calling jseCompare with the result value
JSE_COMPEQUAL.
If one variable is a string and the other a number, the string will be
converted to a number before comparing. Boolean values will be
converted to numbers before being compared.

RETURN True if the variables are equal to each other, False if they are not.

SEE ALSO jseEvaluateBoolean, jseAssign, jseCompare, jseCompareLess

jseCompareLess
DESCRIPTION See if one variable's value is less than another's, using ECMAScript

rules.

SYNTAX jsebool
jseCompareLess(jseContext jsecontext
 jseVariable variable1,
 jseVariable variable2);

PARAMETERS jseContext - Current context
variable1 - The first variable to compare.
variable2 - The second variable to compare.

COMMENTS This function converts variables to primitive values before they are
compared. If the two variables are both strings, they will be compared
as strings; otherwise they will be converted to numbers and compared.

RETURN True if variable1 is less than variable2, False if variable1 is greater
than or equal to variable2.

102 ScriptEase ISDK/C

SEE ALSO jseEvaluateBoolean, jseAssign, jseCompareEquality, jseCompare

jseConvert
DESCRIPTION Convert a variable to a new jseDataType.

SYNTAX void
jseConvert(jseContext jsecontext,
 jseVariable variable,
 jseDataType dType);

PARAMETERS jseContext -The current executing context.
variable - The ScriptEase variable to convert.
dType - The data type the variable is being converted to.

COMMENTS This function changes a variable from one type to another. This
function does not preserve the current contents of the variable, but
instead is much like destroying the previous variable and creating a
new variable with this type. If the variable is already of the specified
type, no conversion is performed and no data is lost.

RETURN None.

SEE ALSO jseDataType, jseGetType, jseAssign

jseCopyBuffer
DESCRIPTION Copy a section of a buffer from a jseVariable to a local buffer.

SYNTAX ulong
jseCopyBuffer(jseContext jsecontext,
 jseVariable variable,
 void *buffer,
 ulong start,
 ulong length);

PARAMETERS jseContext - The current executing context.
variable - The buffer variable which contains the data to be copied.
buffer - The local buffer that will be filled with the copied data.
start - The offset within the variable where the copying will start from.
length - The length of data to be copied from the buffer variable.

RETURN None.

SEE ALSO jseCopyString, jseGetBuffer

API Functions 103

jseCopyString
DESCRIPTION Copy string data from a jseVariable to a user allocated buffer.

SYNTAX ulong
jseCopyString(jseContext jsecontext,
 jseVariable variable,
 jsechar *buffer,
 ulong start,
 ulong length);

PARAMETERS jseContext - The current executing context.
variable - The variable containing the string to be copied.
buffer - The buffer which will be filled with the string data
start - The offset in the variable of the first character to be copied.
length - The length of the string to be copied from the variable.

RETURN None.

SEE ALSO jseCopyBuffer, jseGetString

jseCreateCodeTokenBuffer
DESCRIPTION Compile a block of ScriptEase code into executable tokens

SYNTAX void *
jseCreateCodeTokenBuffer(jseContext jsecontext,
 const char *source,
 jsebool sourceIsFileName,
 uint *bufferLen);

PARAMETERS jseContext - The current executing context.
source - ScriptEase source code to tokenize.
sourceIsFileName - True if Source is a filename, else False if Source

is a block of code.
bufferLen - This argument is set by the call to the length of the created

buffer.

COMMENTS This call will compile the code in the source parameter into a binary
sequence of tokens which can later be executed with jseInterpret or
jseInterpInit by passing the returned buffer as the tokenized code
parameter

RETURN The return value is a void pointer to the block of tokens.

SEE ALSO jseInterpret, jseInterpInit

104 ScriptEase ISDK/C

jseCreateConvertedVariable
DESCRIPTION Create a new variable from another variable and convert its data.

SYNTAX jseVariable
jseCreateConvertedVariable(jseContext jsecontext,
 jseVariable variableToConvert
 jseConversionTarget targetType);

PARAMETERS jseContext - The current executing context.
variableToConvert - variable to be used as a model for the new

variable.
targetType - type of variable to convert to.

COMMENTS This function will convert the variableToConvert into a variable of
the new targetType using the standard ECMAScript conversion rules.
See the description of jseConversionTarget for a description of these
rules. This differs from jseConvert in that it uses ECMAScript
conversion, rather than simply erasing the data and creating a blank
type.

RETURN If successful, a pointer to the converted jseVariable created. If there is
not enough system memory to create the variable (extremely unlikely),
NULL will be returned. You must destroy the variable using
jseDestroyVariable when you are done with it.

SEE ALSO jseConvert, jseCreateVariable, jseCreateSiblingVariable,
jseDestroyVariable, jseConversionTarget

jseCreateFunctionTextVariable
DESCRIPTION Return the source text of a function.

SYNTAX jseVariable
jseCreateFunctionTextVariable(jseContext jsecontext,
 jseVariable functionVariable);

PARAMETERS jseContext - Current jseContext
functionVariable - Variable to get the source from.

COMMENTS This function takes a variable and returns the source text of the
function. This is equivalent to calling ToString() on the function. You
must destroy the variable using jseDestroyVariable when you are done
with it.

RETURN Returns a string containing the source text of functionVariable.

SEE ALSO jseCreateVariable, jseCreateSiblingVariable, jseDestroyVariable

API Functions 105

jseCreateLongVariable
DESCRIPTION Shortcut to create a ScriptEase variable of an integer value.

SYNTAX jseVariable
jseCreateLongVariable(jseContext jsecontext,
 slong value);

PARAMETERS jseContext - The current executing context.
value - Value to initialize this ScriptEase variable to.

COMMENTS This function creates a ScriptEase variable of type jseTypeNumber and
puts the specified value in the variable. This is equivalent to creating a
variable of type jseTypeNumber and then calling jsePutLong() to put a
value into it.

RETURN If successful, a pointer to the jseVariable created. If there is not enough
system memory to create the variable (extremely unlikely), NULL will
be returned.

SEE ALSO jseCreateVariable, jseCreateSiblingVariable,
jseCreateConvertedVariable, jseDestroyVariable, jsePutLong

jseCreateSiblingVariable
DESCRIPTION Create a ScriptEase Sibling Variable.

SYNTAX jseVariable
jseCreateSiblingVariable(jseContext jsecontext,
 jseVariable olderSiblingVar,
 slong elementOffsetFromOlderSibling);

PARAMETERS jseContext - The current executing context.
olderSiblingVar - The variable that you are basing the new sibling

variable on.
elementOffsetFromOlderSibling - The index into the array you are

creating this sibling variable from (if a string or buffer).

COMMENTS This routine creates a sibling ScriptEase Variable. A sibling variable is
a variable that references an already existing ScriptEase Variable.
Changes to sibling variables affect each other. The offset parameter is
used in conjunction with buffer and string variables, as it specifies an
offset into the data at which to begin the sibling variable. The original
variable and the sibling variable still reference the same variable, but
calling jseGetString on the new variable will start at the new offset into
the original.

106 ScriptEase ISDK/C

EXAMPLE jseVariable original = jseCreateVariable(
 jsecontext, jseTypeString);
jsePutString(jsecontext,original,"one two");
jseVariable new = jseCreateSiblingVariable(
 jsecontext,original,4);
jsechar * data = jseGetString(jsecontext, new);
Data now points to "two", and any changes to original or new will
affect the other.

RETURN If successful, a pointer to the sibling jseVariable created. If there is not
enough system memory to create the variable (extremely unlikely),
NULL will be returned.

SEE ALSO jseCreateVariable, jseCreateConvertedVariable,
jseCreateLongVariable, jseDestroyVariable

jseCreateStack
DESCRIPTION Create a jseStack.

SYNTAX void *
jseCreateStack(jseContext jsecontext);

PARAMETERS jseContext - The current executing context.

COMMENTS This function creates a jseStack which is used for pushing parameters
and calling functions from within the ISDK.

RETURN Returns a pointer to the new jseStack. NULL will be returned if there is
insufficient memory to create the stack.

SEE ALSO jseCallFunction, jseDestroyStack, jsePush

jseCreateVariable
DESCRIPTION Create a jseVariable of a given type.

SYNTAX jseVariable
jseCreateVariable(jseContext jsecontext,
 jseDataType VType);

PARAMETERS jseContext - The current executing context.
VType - The type of ScriptEase variable to create.

RETURN If successful, a pointer to the jseVariable created. If there is not enough
system memory to create the variable (extremely unlikely), NULL will
be returned.

SEE ALSO jseCreateSiblingVariable, jseCreateConvertedVariable,
jseCreateLongVariable, jseDestroyVariable

API Functions 107

jseCreateWrapperFunction
DESCRIPTION Create a variable object that is a callable function.

SYNTAX jseVariable
jseCreateWrapperFunction(jseContext jsecontext,
 const char *functionName
 jseLibraryFunction funcPtr,
 sword8 minVariableCount,
 sword8 maxVariableCount,
 jseVarAttributes varAttributes,
 jseVarAttributes funcAttributes,
 void * fData);

PARAMETERS jseContext - The current executing context
functionName - The name of the function to be created.
funcPtr - A pointer to the library function which will be called when

this function is called.
minVariableCount - The minimum number of variables that can be

passed to the function.
maxVariableCount - The maximum number of variables that can be

passed to the function.
varAttributes - attributes of the new variable. See jseVarAttributes,

Types & Macros chapter, for more information.
FuncAttributes - attribute of function.
fData - pointer that will be available to the wrapper function via

jseLibraryData().

RETURN If successful, this returns the jseVariable created. If there is not enough
system memory to create the variable (extremely unlikely), NULL will
be returned. This variable must be destroyed by calling
jseDestroyVariable() when you are done with it. The variable is a
function object which will call your wrapper function.

jseCurrentContext
DESCRIPTION Return the current jseContext based on any level of previous context.

SYNTAX jseContext
jseCurrentContext(jseContext ancestorContext);

COMMENTS Pass this function an old jseContext and it will return the most current
descendent of it.
ancestorContext - Any previous level jseContext.
The current context for the current thread of execution.

108 ScriptEase ISDK/C

RETURN

SEE ALSO jsePreviousContext

jseCurrentFunctionName
DESCRIPTION Get the currently executing ScriptEase function.

SYNTAX const jsechar *
jseCurrentFunctionName(jseContext jsecontext);

COMMENTS Returns a pointer to the name of the function currently executing. Do
not alter the Returned string.
jseContext - The context to use for this interpret.

RETURN Pointer to the name of the function currently executing. DO NOT
modify this string.

SEE ALSO jseGetFunction, jseCurrentFunctionVariable

jseCurrentFunctionVariable
DESCRIPTION Get the current variable associated with a function

SYNTAX

jseVariable
jseCurrentFunctionVariable(jseContext jsecontext);

COMMENTS
Returns the function object of the function currently executing. If it is
the initialization function , then NULL is returned because there is no
function object.

RETURN
Function object of the function currently executing.

SEE ALSO
jseCurrentFunctionName

API Functions 109

jseDeleteMember
DESCRIPTION Delete a jseObject property.

SYNTAX void
jseDeleteMember(jseContext jsecontext,
 jseVariable objectVar,
 const jsechar * name);

COMMENTS This function deletes a property of an object. This function ignore the
jseDontDelete attribute (which is only used for the 'delete' operator
within scripts).
jseContext - The current executing context.
objectVar - ScriptEase variable pointer.
name - The name of the object property to delete.

RETURN None.

SEE ALSO jseGetMember, jseGetNextMember

jseDestroyStack
DESCRIPTION Destroy a jseStack.

SYNTAX void
jseDestroyStack(jseContext jsecontext,
 jseStack stack);

COMMENTS This function destroys the specified stack.
jseContext - The current executing context.
stack - The stack to destroy

RETURN None.

SEE ALSO jseCallFunction, jseCreateStack, jsePush

110 ScriptEase ISDK/C

jseDestroyVariable
DESCRIPTION Destroy a ScriptEase variable.

SYNTAX void
jseDestroyVariable(jseContext jsecontext,
 jseVariable variable);

COMMENTS Use this routine to free up the system resources allocated to a
ScriptEase variable when it is no longer needed. Variables created with
one of the jseCreateXXX() functions must be destroyed; variables
created with the jsereturnXXX() functions need only be destroyed if
the third parameter passed to the function is not
jseReturnTempVariable.
This is probably the most confusing concept in the API. Destroying a
variable does not mean destroying the contents of the variable. Instead,
it means destroy your handle or lock on the variable. If this is the last
such lock, then the contents are destroyed.
When you get a jseVariable handle, sometimes it is a lock that you
must destroy, sometimes you must not destroy it. The description of
the API function will specify which case it is, but the general rule is
that if the API function has the word 'create' in it, you are getting a lock
you must destroy.
The API jseReturnVar() in several modes accepts a lock that it will
destroy when it is done; by passing the variable to it, you are
transferring your lock. If you have a variable that you aren't supposed
to destroy and pass it to this function, you will have a problem. Either
use jseRetKeepLVar to tell jseReturnVar() not to destroy the variable
or create a lock using jseCreateSiblingVariable() which you can then
pass to it.
jseContext - The current executing context.
variable - The ScriptEase variable to destroy.

RETURN None.

SEE ALSO jseCreateVariable, jseCreateSiblingVariable,
jseCreateConvertedVariable, jseCreateLongVariable,
jseReturnVar

API Functions 111

jseEvaluateBoolean
DESCRIPTION Determine if a ScriptEase Variable is True or False.

SYNTAX jsebool
jseEvaluateBoolean(jseContext jsecontext,
 jseVariable variable);

COMMENTS Test to see if a ScriptEase variable evaluates to True or False. Pass a
variable of type jseTypeBoolean.
jseContext - the context that the tested variable belongs to.
variable - The ScriptEase variable to test.

RETURN The boolean value of variable.

jseFindVariable
DESCRIPTION Search for a variable with a given name.

SYNTAX jseVariable
jseFindVariable(jseContext jsecontext,
 const char * name);

COMMENTS jseContext - the context that the tested variable belongs to.
variable - The name of the variable sought.
This variable searches the current scope chain for a variable with the
given name. Usually, you want to search the scope chain as it was for
the function that called you, since someone will likely write something
like:
function myfunc()
{
 var a;
 wrapper("a");
}
The 'a' refers to the 'a' from the point of view of the calling function,
not your wrapper function (which does not have the locals of the
calling function as part of its scope chain.) In most cases, thus, the
correct way to call this function is to use
'jsePreviousContext(jsecontext)' as the context you pass to this
function.

RETURN Returns the variable if it is found, NULL if no such variable can be
found.

SEE ALSO jseGetVariableName

112 ScriptEase ISDK/C

jseFuncVar
DESCRIPTION Get a ScriptEase function wrapper argument.

SYNTAX jseVariable
jseFuncVar(jseContext jsecontext,
 uint ParameterOffset);

COMMENTS This function gets a parameter passed to a wrapper function. It returns
a jseVariable pointer, but does no type checking.
jseContext - The context for this wrapper function. Use the value

supplied to the wrapper function by the ScriptEase Engine.
ParameterOffset - The offset of the argument you are trying to access

starting at 0. Variables are passed from left to right.

RETURN Returns a jseVariable pointer if a valid index is given. Otherwise
returns NULL. If index is invalid then the error handling routines will
have been called.

SEE ALSO jseFuncVarCount, jseGetFunction, jseFuncVarNeed

jseFuncVarCount
DESCRIPTION Get the number of parameters passed to a wrapper function.

SYNTAX uint
jseFuncVarCount(jseContext jsecontext);

COMMENTS This function determines how many arguments were passed to a
ScriptEase function.
jseContext - The context for this wrapper function. Use the value

supplied to the wrapper function by the ScriptEase Engine.

RETURN The number of arguments passed to this wrapper function.

SEE ALSO jseFuncVar, jseGetFunction, jseFuncVarNeed

jseFuncVarNeed
DESCRIPTION Get a ScriptEase function wrapper argument and validate its type.

SYNTAX jseVariable
jseFuncVarNeed(jseContext jsecontext,
 uint parameterOffset,
 jseVarNeeded need);

COMMENTS This function is used to access function arguments to a ScriptEase
wrapper function. It returns a jseVariable pointer, and does type
checking and possible conversion.

API Functions 113

jseContext - The context for this wrapper function. Use the value
supplied to the wrapper function by the ScriptEase Engine.

parameterOffset - The offset of the argument you are trying to access,
starting at 0.

need - The type of the argument you are trying to access. It can be one
or more of the following values. If you are supplying two
possible types, they should be OR'ed together.

JSE_VN_UNDEFINED get an undefined variable.
JSE_VN_NUMBER get a number.
JSE_VN_NULL get a NULL variable.
JSE_VN_STRING get a string or byte array.
JSE_VN_BOOLEAN get a boolean variable.
JSE_VN_INT get a number that can be represented as a long with no

loss of precision.
JSE_VN_FUNCTION get a function object.
JSE_VN_BYTE get a number that can be represented as a byte with

no loss of precision.
JSE_VN_BUFFER get a buffer.
JSE_VN_OBJECT get an object.
JSE_VN_ANY accepts any variable type.
JSE_VN_NOT() accepts any variable not passed as a parameter. For

example:
JSE_VN_NOT(JSE_VN_NUMBER | JSE_VN_STRING)
will accept any variable that is not a number or a string.

JSE_VN_CONVERT(from, to) This macro converts variables of the
type indicated by the first parameter to the type indicated by the
second parameter. For example:

JSE_VN_CONVERT(JSE_VN_ANY, JSE_VN_STRING)
will convert any type of variable received to a string. You cannot
convert from JSE_VN_INT, JSE_VN_BYTE, or
JSE_VN_FUNCTION.
 JSE_VN_COPYCONVERT This option indicates that if a variable

must be converted (with JSE_VN_CONVERT() or with the
jseOptLenientConversion option), a copy of the variable will be
made and converted, so that the original variable retains its type
and value. You may also use the macro
JSE_FUNC_VAR_NEED(). If the index or type are invalid this
macro will not return and the scripting session will be terminated.

JSE_VN_CREATE - create variable for explicit jseDestroyVariable.
JSE_VN_READ - variable is for reading only.
JSE_VN_WRITE - variable is for writing only.

114 ScriptEase ISDK/C

RETURN returns a jseVariable pointer if a valid index is given and the type
specified is found. Otherwise returns NULL. If index is invalid or the
type is incorrect, an error message will have been called, and you
should return from the function.

SEE ALSO jseFuncVar, jseGetFunction, jseFuncVarCount

jseGarbageCollect
DESCRIPTION jseGarbageCollect allows you to control ScriptEase's internal garbage

collection. This API call allows you to force an immediate collection
or prevent collections from occurring.

SYNTAX void
jseGarbageCollect(jseContext jsecontext,uint action);

PARAMETERS jseContext - The current executing context.

action - The garbage collection option to apply

COMMENTS The action may be one of three possible values:

JSE_GARBAGE_COLLECT - perform a garbage collection
immediately, even if you have turned off garbage collection using this
call.

JSE_GARBAGE_OFF - turn off garbage collecting. This increments a
count, so if you turn it off more than once, you will need to turn it on
more than once. When garbage collection is turned off, the engine will
allocate more memory when it runs out rather than using collection to
free up unused memory. JSE_GARBAGE_ON - turn garbage
collection back on.

Please note that turning off garbage collection will significantly slow
execution in addition to using a lot more memory; almost all programs
need never do this.

Forcing a collection is useful because objects that have destructors and
are freed will have their destructors called. This will allow you to
ensure all such destructors have been called at a particular point in
your program.

jseGetArrayLength
DESCRIPTION Get the span of elements in a ScriptEase variable object, string or

buffer.

SYNTAX ulong

API Functions 115

jseGetArrayLength(jseContext jsecontext,
jseVariable variable, slong *MinIndex);

COMMENTS This routine determines the size (length) of a ScriptEase object, string
or buffer.

jseContext - The current executing context.
variable - array variable for which to check the span.
MinIndex - When the function returns this will be set to the index

value of the first element in the ScriptEase array. This value will
not be greater than zero.

In evaluation objects, this function will only consider elements with
numeric indices.

For example, with this code the length of "foo" is 4:
 var foo= new object();
 foo[3] = "hello"
 foo blah = "goodbye

RETURN The length of the array. This will be zero or greater.

SEE ALSO jseCreateVariable, jseCreateSiblingVariable, jseCreateLongVariable,
jseDestroyVariable, jseSetArrayLength

jseGetAttributes
DESCRIPTION Get a variable's attributes.

SYNTAX jseVarAttributes
jseGetAttributes(jseContext jsecontext,
jseVariable variable);

COMMENTS This function is used to access the data associated with a jseTypeByte
variable.
jseContext - The current executing context.
variable - The ScriptEase variable to read.

RETURN The attributes assigned to variable.

SEE ALSO jseSetAttributes

116 ScriptEase ISDK/C

jseGetBoolean
DESCRIPTION Get boolean from a jseVariable.

SYNTAX jsebool
jseGetBoolean(jseContext jsecontext,
jseVariable variable);

COMMENTS This function retrieves the data associated with a jseTypeBoolean
variable.

jseContext - The current executing context.
variable - The ScriptEase variable to read.

RETURN The attributes assigned to variable.

SEE ALSO jseGetAttributes

jseGetBuffer
DESCRIPTION Get buffer data from a jseVariable.

SYNTAX void _HUGE_ *
jseGetBuffer(jseContext jsecontext,
 jseVariable variable,
 ulong *filled);

COMMENTS Get buffer data from a jseVariable. Buffer data can have binary and
NULL characters in the block and although it will always be NULL
terminated, the final NULL is not considered part of the data and is not
part of the length. The returned data can not be modified.

jseContext - The current executing context.
variable - The jseVariable for the buffer being accessed.
filled - This variable will be set to the length of the data buffer on

return.

RETURN The buffer data.

SEE ALSO jseGetWritableBuffer, jseGetString

API Functions 117

jseGetByte
DESCRIPTION Get the unsigned-byte value of a numeric variable.

SYNTAX uchar
jseGetByte(jseContext jsecontext,
 jseVariable variable);

COMMENTS This function gets the data associated with a jseTypeByte variable.
jseContext - The current executing context.
variable - The ScriptEase variable to read.

RETURN The value contained in the numeric variable as a byte (i.e. uchar).

SEE ALSO jsePutByte

jseGetCurrentThisVariable
DESCRIPTION Get the current "this" variable.

SYNTAX jseVariable
jseGetCurrentThisVariable(jseContext jsecontext);

COMMENTS This function is used to get the current "this" variable.
jseContext - The current executing context.

RETURN Returns a pointer to the current "this" variable.

SEE ALSO jseGlobalObject

jseGetExternalLinkParameters
DESCRIPTION Get a pointer to the external link parameters.

SYNTAX struct jseExternalLinkparameters *
jseGetExternalLinkparameters(jseContext jsecontext);

COMMENTS Use this function to get a pointer to the external link parameters. Use
the pointer to temporarily change the call- back functions. It is up to
you to save and restore this data structure.
jseContext - The current executing context.

RETURN A pointer to a jseExternalLinkparameters structure.

SEE ALSO jseInitializeExternalLink, jseTerminateExternalLink

118 ScriptEase ISDK/C

jseGetFileNameList
DESCRIPTION This function returns a list of all files opened by the script.

SYNTAX char * *
jseGetFileNameList(jseContext jsecontext,
 int *number);

COMMENTS jseContext - The current executing context.
number - When the function returns this variable will be set to the

number of currently open files.

RETURN An array of strings representing the file names of currently open files.
Do not free or write this data.

jseGetFunction
DESCRIPTION Get a pointer to a ScriptEase variable.

SYNTAX jseVariable
jseGetFunction(jseContext jsecontext,
 jseVariable object,
 const jsechar *functionName,
 jsebool errorIfNotFound);

COMMENTS This function gets a pointer to a given ScriptEase Library function, or
any other function in the script being executed.
jseContext - The context to search for the given function name.
object - The object the function will be associated with. Use NULL to

associate the function with the global object.
functionName - A string containing the name of the ScriptEase

function you are searching for.
errorIfNotFound - If this flag is set to True, an error message will be

displayed if the requested function can not be found.

RETURN A jseVariable for the requested function. This function will cause a
temporary variable to be freed when the current context is ended, such
as when returning from a wrapper function. To avoid the temporary
variable (e.g. not calling from a wrapper or calling frequently) use
jseMemberExec(...jseCreateVariable) and test that the variable is a
function with jseIsFunction()
This function will return NULL if the requested function wasn't found.

SEE ALSO jseCallFunction, jseCurrentFunctionName

API Functions 119

jseGetIndexMember
DESCRIPTION Get a jseVariable pointer to a numerically indexed object property.

SYNTAX jseVariable
jseGetIndexMember(jseContext jsecontext,
 jseVariable objectVariable,
 slong index);

COMMENTS This routine gets a jseVariable pointer to an object property. This
function is intended for use with the numbered properties of objects.
To get a property that is named with a string, use jseGetMember().
jseContext - The current executing context.
objectvariable - The jseVariable pointer to the object from which to

get a property.
index - The index of the desired property.

RETURN jseVariable is returned or NULL if the index is invalid.

SEE ALSO jseGetNextMember, jseIndexMember, jseMember, jseDeleteMember,
jseGetIndexMemberEx

jseGetIndexMemberEx
DESCRIPTION Get a jseVariable pointer to a numerically indexed object property.

SYNTAX jseVariable
jseGetIndexMember(jseContext jsecontext,
 jseVariable objectVariable,
 slong index uword16 flags);

COMMENTS This routine gets a jseVariable pointer to an object property. This
function is intended for use with the numbered properties of objects.
To get a property that is named with a string, use jseGetMemberEx().
jseContext - The current executing context.
objectvariable - The jseVariable pointer to the object from which to

get a property.
index - The index of the desired property.
flags - this should be set to one of the following:
jseCreateVar - the variable must be explicitly destroyed with

jseDestroyVariable() when you are done with it. If this flag is
not specified then the variable is put in a temporary list to be
destroyed when the current context finishes, such as when
returning from a wrapper function.

jseDefault - the variable will be freed when the function exits.
JSE_VN_LOCKREAD
JSE_VN_LOCKWRITE

120 ScriptEase ISDK/C

RETURN jseVariable is returned or NULL if the index is invalid.

SEE ALSO jseGetNextMember, jseIndexMember, jseMember,
jseIndexMemberEx, jseMemberEx, jseGetIndexMember,
jseGetMember, jseGetIndexMemberEx, jseGetMemberEx,
jseDeleteMember

jseGetLastApiError
DESCRIPTION Retrieve error message set by failed API call.

SYNTAX const jsechar *
jseGetLastApiError()

COMMENTS If one of the API calls fails, it will set an error message explaining the
reason for the failure. This function retrieves this error message.
You may also use the macro jseApiOK to determine whether the error
flag has been set; this macro returns True if there is an error message
set and False if there is not.

RETURN returns a pointer to a string containing the error message.

jseGetLinkData
DESCRIPTION Get the optional data associated with a jseContext.

SYNTAX void *
jseGetLinkData(jseContext jsecontext);

COMMENTS This function gets a pointer to the user supplied data for a given
context, i.e., the data supplied in the linkData parameter to
jseInitializeExternalLink().
jseContext - The current executing context

RETURN Far pointer to the user supplied data for the given context.

SEE ALSO jseInitializeExternalLink, jseTerminateExternalLink,
jseGetExternalLinkparameters

API Functions 121

jseGetLong
DESCRIPTION Get the long value of a numeric variable.

SYNTAX slong
jseGetLong(jseContext jsecontext,
 jseVariable variable);

COMMENTS Use this function to access the data of a jseTypeNumber variable, cast
to an slong.
jseContext - The current executing context.
variable - The ScriptEase variable to read.

RETURN The value contained in the numeric variable as an slong.

SEE ALSO jsePutLong

jseGetMember
DESCRIPTION Get a jseVariable pointer to a ScriptEase object property.

SYNTAX jseVariable
jseGetMember(jseContext jsecontext,
 jseVariable objectVariable,
 const jsechar *Name);

COMMENTS This routine gets a jseVariable pointer to an object property.
jseContext - The current executing context.
objectVariable - The jseVariable pointer to the object from which to

get a property. Use NULL to indicate the global variable. The
prototype will be searched.

Name - The name of the object property.

RETURN A jseVariable pointer to the requested object property, or NULL if the
object does not have the specified property..

SEE ALSO jseGetNextMember, jseMember, jseDeleteMember

122 ScriptEase ISDK/C

jseGetMemberEx
DESCRIPTION Get a jseVariable pointer to a ScriptEase object property.

SYNTAX jseVariable
jseGetMemberEx(jseContext jsecontext,
 jseVariable objectVariable,
 const jsechar *Name,
 uword16 flags);

COMMENTS This routine gets a jseVariable pointer to an object property.
jseContext - The current executing context.
objectVariable - The jseVariable pointer to the object from which to

get a property. Use NULL to indicate the global variable.
Name - The name of the object property.
flags - this should be set to one of the following:
jseCreateVar - the variable must be explicitly destroyed with

jseDestroyVariable() when you are done with it. If this flag is
not specified then the variable is put in a temporary list to be
destroyed when the current context finishes, such as when
returning from a wrapper function.

jseDefault - the variable will be freed when the function exits.
RETURN A jseVariable pointer to the requested object property, or NULL on

failure.

SEE ALSO jseMemberEx, jseGetNextMember, jseMember, jseMemberEx,
jseIndexMember, jseIndexMemberEx, jseGetIndexMember,
jseGetIndexMemberEx, jseDeleteMember

API Functions 123

jseGetNextMember
DESCRIPTION Routine to enumerate all the properties of an object.

SYNTAX jseVariable
jseGetNextMember(jseContext jsecontext,
 jseVariable objectVar,
 jseVariable prevMemberVariable,
 const jsechar * * name);

COMMENTS This function allows you to get all the properties of a ScriptEase object
variable by stepping through them one at a time. It isn't necessary to
know the names of the properties. In the first call, NULL is provided as
the previous property; the first property of the object will be returned.
This function will return properties which have the dontEnum attribute
set.
jseContext - The current executing context.
objectVar - The jseVariable pointer to the object from which to

retrieve properties. Use NULL to indicate the global variable.
prevMemberVariable - Pointer to the previous object property, if this

is set to NULL, the first member will be returned.
name - On return, the name of the object property that was returned.

Do not alter this variable.

RETURN A jseVariable pointer to the next object property. This value should be
used on subsequent calls to retrieve the next properties. When NULL is
returned, there are no more object properties.

SEE ALSO jseGetMember, jseMember, jseDeleteMember

jseGetNumber
DESCRIPTION Get the floating-point numeric value of a numeric variable.

SYNTAX jseGetNumber
jseGetNumber(jseContext jsecontext,
 jseVariable variable);

COMMENTS Use this function to access the data of a jseTypeNumber variable
jseContext - The current executing context.
variable - The ScriptEase variable to read.

RETURN The value contained in the numeric variable as a jseNumber (i.e.
floating-point number).

SEE ALSO jsePutLong, jsePutNumber, jseGetLong, jseGetByte

124 ScriptEase ISDK/C

jseGetString
DESCRIPTION Get string data from a ScriptEase variable.

SYNTAX const jsechar *
jseGetString(jseContext jsecontext,
 jseVariable variable
 ulong * filled);

COMMENTS Get string data from a variable. The returned data must not be
modified.
jseContext - The current executing context.
variable - The ScriptEase variable to read.
filled - When the function returns this will be set to the length of the

string.

RETURN The data will be NULL-terminated, but this terminating null character
is not considered part of the variable and not considered when
determining the variable length. Note also that ECMAScript strings
may contain embedded NULLs.

SEE ALSO jseGetBuffer, jseGetWritableString, jseGetWritableBuffer,
jseCopyString, jseCopyBuffer, jsePutString, jsePutBuffer

jseGetType
DESCRIPTION Get the jseType of a jseVariable.

SYNTAX jseDataType
jseGetType(jseContext jsecontext,
 jseVariable variable);

COMMENTS This function is used to determine the specified jseVariable's type.

jseContext - The current executing context.
variable - The jseVariable whose type is being checked.

RETURN The type of the variable passed as the argument. Valid types are
jseTypeUndefined, jseTypeNull, jseTypeNumber, jseTypeString, and
jseTypeBuffer, jseTypeObject, jseTypeBoolean.

SEE ALSO jseConvert, jseAssign

API Functions 125

jseGetVariableName
DESCRIPTION Get the name of a script variable corresponding to the given

jseVariable.

SYNTAX jsebool
jseGetVariableName(jseContext jsecontext,
 jseVariable variableToFind,
 char * const buffer
 ulong bufferSize);

COMMENTS This function gets the name of the variable corresponding to
variableToFind. For example, if there is an error in executing the script
and you wish to inform the user that a variable is of the wrong type,
you can use this function to get the name of the variable as it is referred
to in the script.

RETURN True if successful, False if the variable was not found

SEE ALSO jseGetType, jseGetFunctionName

jseGetWriteableBuffer
DESCRIPTION Get buffer data from a jseVariable.

SYNTAX void _HUGE_ *
jseGetWriteableBuffer(jseContext jsecontext,
 jseVariable variable,
 ulong *filled);

COMMENTS Get buffer data from a variable. Buffer data can have binary and '\0'
characters in the block. The returned data can be modified. The filled
parameter will be assigned the length of the data buffer.
jseContext - The current executing context. variable - The jseVariable

handle to the buffer being accessed.
filled - This variable will be set to the length of the data buffer on

return.

RETURN The buffer data.

SEE ALSO jseGetBuffer, jseGetString

126 ScriptEase ISDK/C

jseGetWriteableString
DESCRIPTION Get string data from a ScriptEase variable.

SYNTAX jsechar *
jseGetWriteableString(jseContext jsecontext,
 jseVariable variable,
 ulong *filled)

COMMENTS Get string data from a ScriptEase variable. This function differs from
jseGetString in that the returned data can be modified. However, to
make any changes reflected in the variable, you must use jsePutString()
to update the variable. This function merely provides a buffer you can
modify.
jseContext - The current executing context.
variable - The jseVariable handle to the string variable being accessed.
filled - This variable will be set to the length of the string.

RETURN The string data contained in variable.

SEE ALSO jseGetString, jseGetNumber

jseGlobalObject
DESCRIPTION Get the current global object.

SYNTAX jseVariable
jseGlobalObject(jseContext jsecontext);

COMMENTS This function is used to get the current global object.
jseContext - The current executing context.

RETURN Returns a pointer to the current global object.

SEE ALSO jseGetCurrentThisVariable

API Functions 127

jseIndexMember
DESCRIPTION Retrieve a numerically indexed variable from an object; create it if it

does not exist.

SYNTAX jseVariable
jseIndexMember(jseContext jsecontext,
 jseVariable objectVar,
 slong index,
 jseDataType type);

COMMENTS This function is intended to get the numbered properties of objects. To
get named properties, use jseMember().
jseContext - The current executing context.
objectVar - The array object to query.
index - The index of the variable to retrieve.
type - The type of the desired variable.

RETURN The desired variable. If it does not exist it will be created.

SEE ALSO jseTerminateEngine

jseIndexMemberEx
DESCRIPTION Retrieve a variable from a numerically-indexed object; create it if it

does not exist.

SYNTAX jseVariable
jseIndexMemberEx(jseContext jsecontext,
 jseVariable objectVar,
 JSE_POINTER_SINDEX index,
 jseDataType type
 uword16 flags);

COMMENTS This function is intended to get the numbered properties of objects. To
get named properties, use jseMemberEx().

jseContext - The current executing context.
objectVar - The array object to query.
index - The index of the variable to retrieve.
type - The type of the desired variable.
flags - this should be set to one of the following:

jseCreateVar - the variable must be explicitly destroyed with
jseDestroyVariable() when you are done with it

jseDefault - the variable will be freed when the function exits.
JSE_VN_LOCKREAD
JSE_VN_LOCKWRITE

128 ScriptEase ISDK/C

RETURN The desired variable. If it does not exist it will be created.
SEE ALSO jseTerminateEngine

jseInitializeEngine
DESCRIPTION This call initializes the ScriptEase Interpreter Engine.

SYNTAX uint
jseInitializeEngine();

COMMENTS Call this before any other call in the toolkit to initialize the processor.

RETURN Returns the ID of the engine for version number verification.

SEE ALSO jseTerminateEngine

jseInitializeExternalLink
DESCRIPTION Routine to initialize a ScriptEase context.

SYNTAX jseContext
jseInitializeExternalLink(void _FAR_ *linkData,
 jseExternalLinkparameters *linkParms
 const char * globalVarName,
 cost char *accessKey);

COMMENTS LinkData - this variable contains any global data for your scripting
session. The interpreter ignores this data, but since it is included
in the jseContext it is available to all functions registered with it.
This is a "cookie" which provides you with a way to pass
information to the routines you supply to a ScriptEase context.
The exact pointer you supply will be available to all functions
called by the ScriptEase Engine for the ScriptEase context being
created. Use LinkData to maintain global information throughout
your scripting session; or to store any values your script will use
later on. The ScriptEase engine itself does not modify link data.

linkParms - this structure (jseExternalLinkparameters) contains the
user defined properties of the ISDK. They are described in full
below.

globalVarName - this parameter, a string, is the name you wish to
give the global object.

accessKey - this is the key (supplied by Nombas) needed to activate
your copy of ScriptEase:Integration SDK.

API Functions 129

The jseExternalLinkparameters structure has this prototype:
struct jseExternalLinkparameters
{
 jseFileFindFunc FileFindFunc;
 jseErrorMessageFunc PrintErrorFunc;
 jseMayIContinueFunc MayIContinue;
 jseGetSourceFunc GetSourceFunc;
 jseAppLinkFunc AppLinkFunc;
 const char *jseSecureCode;
 uword32 options
};

typedef
jsebool(FAR_CALL *jseFileFindFunc)

 (
 jseContext jsecontext,

 char * FileSpec,
 char * FilePathResults,
 uint FilePathLen,
 jsebool FindLink

);

typedef
void (FAR_CALL *jseErrorMessageFunc)
(
 jseContext jsecontext,

 const char *ErrorString
);

typedef
jsebool (FAR_CALL *jseMayIContinueFunc)

 (jseContext jsecontext);

typedef
jsecontext(FAR_CALL *jseAppLinkFunction)

 (
 jseContext jsecontext,

 const char *Errorstring
);
typedef
jsecontext(FAR_CALL *jseAppLinkFunction)

(
 jseContext jsecontext, const char
*Errorstring
);

typedef
jseGetSourceFunc(jseContext jsecontext,

 struct jseToolkitAppSource *
 toolkitAppSource,
 jseToolkitAppSourceFlags flags);

130 ScriptEase ISDK/C

jseFileFindFunc - Function that will be called every time a file needs
to be opened by the interpreter. Use this function to provide the
full path and name to a file that exists. This may be set to NULL
if it is not used.

jseErrorMessageFunc - Function to be called by the interpreter when
a script encounters an error condition. If this parameter is set to
NULL, the default handler is used.

jseMayIContinueFunc - Function to be called before executing every
command in a script for permission to continue interpreting it.
This allows for implementing single step debugging
environments. If this parameter is set to NULL, the ScriptEase
engine will not call any routine.

To use this function to provide a debugging interface, use
jseLocateSource() to retrieve the name and line number of the current
location in the script being run. This will provide a callback monitoring
function for your scripts, call multitasking tickler routines, or a check
on external status such as the pressing of ctrl-C or break.
 typedef jsebool (JSE_CFUNC
*jseMayIContinueFunc)
 (jseContext jseContext);
jseSecureCode - Either a full file name and path or a block of

JavaScript code that performs the security checking. Set this
parameter to NULL if no security checking is needed.

 jseGetSource - This function tells the interpreter how to open files
included with #include statements and scripts passed to
jseInterpret as files. The third parameter passed to this function is
a flag with one of the following values:

jseNewOpen - open and initialize the file for reading.
jseNextLine - retrieve next line of code from file.
jseClose - close file and cleanup.
jseAppLinkFunction - This callback function can be used to let your

application create a new context initialized with globals, libraries,
#defines, etc. A common use would be to create a new context in
a new thread. Set to NULL if you do not use it.

Options - this is an or mask of the following flags. They define how
the interpreter treats variables.

jseDefault - Use this flag to use the system defaults.
jseOptRequireVarKeyword - Use this flag if you want to force your

users to use the 'var' keyword when creating variables.

API Functions 131

jseOptRequireFunctionKeyword - Use this flag if you want to force
your users to use the 'function' keyword when creating functions.

jseOptDefaultLocalVars - Use this flag if you want variables declared
in a local environment to be local, regardless of whether the var
keyword is used or not. (In JavaScript, variables declared
without the var keyword would normally be global). If there is a
like-named global variable, instead of creating a local variable
the global variable would be used.

jseOptDefaultCBehavior - If this flag is defined, functions will be
treated as if they were created with the 'cfunction' keyword,
regardless of what keyword they were defined with.

jseOptWarnBadMath - If this flag is set, the interpreter will notify
you when you make illegal mathematical calculations (such as
dividing by zero). In JavaScript, dividing by zero normally
returns the value NaN and does not generate an error.

jseOptLenientConversion - this option causes variables to
automatically be converted to the required type if possible,
instead of generating an error. With this option set the macro
JSE_VN_CONVERT() will always behave as if the first
parameter passed were JSE_VN_ALL. The jsePutxxx()
functions will convert the variable to the required type. If you
are retrieving data from a variable, if the variable is not of the
correct type a copy of the variable will made, converted to the
correct type, and returned.

jseOptIgnoreExtraParameters - If this option is set, the interpreter
will ignore any parameters greater than the maximum allowed
for the function (specified in the Function Descriptor table added
to the context with jseAddLibrary().

RETURN returns a jseContext initialized with the values provided.

SEE ALSO jseGetExternalLinkparameters()

jseInterpret
DESCRIPTION Interpret a ScriptEase script.

SYNTAX jsebool
jseInterpret(jseContext jsecontext,
 const * sourceFile,
 const * sourceText,
 const void * pretokenizedBuffer,
 jseNewContextSettings jseNewContextSettings,
 int howToInterpret,
 jseContext localVariableContext,
 jseVariable *returnVar);

132 ScriptEase ISDK/C

COMMENTS This call is the heart of the ScriptEase engine. After your ScriptEase
toolkit environment is set up, call this routine to interpret scripts.

jseContext - The context to use for this interpret.
sourceFile - This argument is a string of the filename and path to a

JavaScript file or NULL if you are interpreting JavaScript source
from memory.

sourceText - This argument is either a block of SE code in memory to
interpret or if interpreting code from a file, the optional arguments
to pass to the script. If you do not need to use this parameter it
should be set to NULL.

pretokenizedBuffer - If you are interpreting code that has been
pretokenized with the jseCreateCodeTokenBuffer(), the code
should go here. Otherwise, set this parameter to NULL.

jseNewContextSettings - These flags specify which elements of the
jseContext about be created will be created new. Otherwise the
elements will be inherited from the current jseContext. Use one
or more of the following flags OR'ed together:

jseNewNone - Do not create any new elements.

jseNewFunctions - Create new functions.

jseNewSecurity - Reinitialize security before interpreting the
script.

jseAllNew - Create new elements for all categories (functions will
be inherited from the parent jseContext).

howToInterpret - A flag to specify the method of interpretation. Use
one or more of the following, joined by a bitwise or (|):

JSE_INTERPRET_NO_INHERIT - This flag prevents global
variables from being passed to the new jseContext.

JSE_INTERPRET_CALL_MAIN - Call main() after running
initialization code.

localVariableContext - This parameter is a jseContext or NULL. If you
are calling jseInterpret from within a wrapper function, pass
jsePreviousContext(jsecontext); otherwise pass NULL.

returnCode - If the function executes successfully (i.e., returns True),
on return this will contain the value returned by the JavaScript
being executed. This variable must later be destroyed with
jseDestroyVariable(). If you don't need to use this value, pass in
NULL. The return value will be cleaned up automatically.

RETURN True if the script was successfully executed, False if not.

API Functions 133

jseInterpExec
DESCRIPTION Interpret a ScriptEase script

SYNTAX jseContext
jseInterpretExec(jseContext jsecontext);

COMMENTS jseContext - The context to use for this interpret.
See jseInterpInit() for a description on using this function.

RETURN The context to pass to the next call to this function. NULL indicates the
script is done executing.

jseInterpInit
DESCRIPTION Interpret a ScriptEase script one statement at a time under your

program's control.

SYNTAX jseContext
jseInterpret(jseContext jsecontext,
 const * sourceFile,
 const * sourceText,
 const void * pretokenizedBuffer,
 jseNewContextSettings jseNewContextSettings,
 int howToInterpret,
 jseContext localVariableContext,
 jseVariable *returnVar);

COMMENTS jseInterpInit(), jseInterpExec() and jseInterpTerm() provide an
alternative to jseInterpret() for interpreting scripts. The two systems
work in slightly different ways. jseInterpret() will call the
MayIContinueFunc() defined in the jseContext before each script line
is executed.

With jseInterpInit() et al, you have more control over how the script
executes. jseInterpInit() initializes the script for interpretation. It takes
the same parameters as jseInterpret(). jseInterpInit() returns a new
jseContext for the script, which is then passed to jseInterpExec().

The script is executed through repeated calls to jseInterpExec() taking
this jseContext() as its only parameter and returning an updated
jseContext that must be passed again to jseInterpExec to execute
successive lines. If there are no more lines to execute, jseInterpExec()
returns NULL. MayIContinueFunc() will not be called.

When jseInterpExec() returns NULL, the script has completed, and you
should call jseInterpTerm() to clean up the interpret. jseInterpTerm()
takes one parameter, the original jseContext passed to jseInterpInit()
and not one of jseContexts returned from jseInterpInit() or
jseInterpExec(). See jseInterpret for a description of parameters.

134 ScriptEase ISDK/C

Note that jseInterpInit() is only provided so that you can execute your
script one statement at a time under your program's control. It's use is
probably unneeded 99% of the time, as the MayIContinue function
(defined in the jseExternalLinkParameters structure) can do what you
need instead. In fact, there is NO functionality related to scoping that
jseInterpInit() has that cannot be done using jseInterpret().

RETURN The context to use with jseInterpExec() the first time or NULL if some
error prevented the interpreting from being initialized..

jseInterpTerm
DESCRIPTION Terminate a ScriptEase script interpretation session.

SYNTAX jseVariable
jseInterpTerm(jseContext jsecontext,
 jsebool traperrors);

COMMENTS jseContext - The context to use for this interpret.
See jseInterpInit() for a description of using this function.

RETURN The variable returned as the result of the script. You must destroy it
when you are done with it. NULL is returned if there was an error
interpreting the script.

jseIsFunction
DESCRIPTION Test whether a variable is a script or wrapper function registered with

the supplied jseContext.

SYNTAX jsebool
jseIsFunction(jseContext jsecontext,
 jseVariable functionVariable);

COMMENTS This function tests whether functionVariable is a registered function or
not. If functionVariable was retrieved from a call to jseGetFunction(),
this test is not necessary.
jseContext - The current executing context.
functionVariable - The variable being tested.

RETURN True if functionVariable is a registered function; False if it is not.

SEE ALSO jseCreateWrapperFunction, jseIsLibraryFunction

API Functions 135

jseIsLibraryFunction
DESCRIPTION Test whether a variable is a wrapper function registered with the

supplied jseContext.

SYNTAX jsebool
jseIsLibraryFunction(jseContext jsecontext,
 jseVariable functionVariable);

COMMENTS This function tests whether functionVariable is a function added with
jseAddLibrary or not.
jseContext - The current executing context.
functionVariable - The variable being tested.

RETURN Returns True if the function was added with jseAddLibrary();
otherwise returns False.

SEE ALSO jseCreateWrapperFunction, jseIsFunction

jseLibErrorPrintf
DESCRIPTION Prints a formatted string describing the error encountered and flags the

interpreter to quit execution.

SYNTAX void
jseLibErrorPrintf(jseContext exitContext,
 CPP_CONST char * formatS,...);

COMMENTS The function sets the error flag for the jseContext and prints the format
string. The string lets you supply information about why the error
occurred. It uses the same arguments and format string as the standard
printf function.
exitContext - The context to associate with the Error.
formatS - The format string for the printf statement, followed by any

parameters it takes.
If an error condition has already been flagged, then this function
performs no action.

RETURN None.

SEE ALSO jseLibSetErrorFlag, jseLibSetExitFlag

136 ScriptEase ISDK/C

jseLibSetErrorFlag
DESCRIPTION Set the Lib Error flag.

SYNTAX void
jseLibSetErrorFlag(jseContext jsecontext);

COMMENTS Use this function sets the lib error flag to indicate that an error
condition exists. The script will be terminated and any necessary
cleanup performed.
jseContext - The context to set the lib error flag for.

RETURN None.

SEE ALSO jseLibErrorPrintf, jseLibSetExitFlag

jseLibSetExitFlag
DESCRIPTION Set the ScriptEase Lib exit flag.

SYNTAX void jseLibSetExitFlag(jseContext jsecontext,
 jseVariable exitVariable);

COMMENTS Sets exit flag for this jseContext and saves exit variable. The script will
clean-up and exit on return from this wrapper function.
jseContext - The current executing context.
exitVariable - The value to be returned by the script. This is the

variable returned in jseInterpret.

RETURN None.

SEE ALSO jseLibErrorPrintf, jseLibSetErrorFlag

jseLibraryData
DESCRIPTION Get the library data for the current library

SYNTAX void _FAR_ *
jseLibraryData(jseContext jsecontext);

COMMENTS This function gets the library data for a given library. It is intended for
use within a wrapper function for a library.

jseContext - The jseContext for which to get the library data. Use the
value passed to your wrapper function.

RETURN Far pointer to the requested library data, the value returned by
jseLibraryInitFunction specified in jseAddLibrary() or add in
jseCreateWrapper or jseMemberWrapper.

SEE ALSO jseAddLibrary

API Functions 137

JseLocateSource
DESCRIPTION Get the file information for the currently running script.

SYNTAX const jsechar *
jseLocateSource(jseContext jsecontext,
 uint *lineNumber);

COMMENTS Returns a pointer to the name of the source file for the code currently
being executed, and sets lineNumber to the line number currently
being executed or parsed. If there is no current file (as when
interpreting a string) NULL will be returned.
jseContext - The context to use for this interpret.
lineNumber - Pointer to the current source file number.

RETURN A string containing the name of the source file for the currently
executing code. Do not modify this string

jseMember
DESCRIPTION Get a ScriptEase variable reference to a ScriptEase structure element.

SYNTAX jseVariable
jseMember(jseContext jsecontext,
 jseVariable objectVar,
 const jsechar *Name,
 jseDataType DType)

COMMENTS This routine gets a ScriptEase variable reference for an object's
property. Once the jseVariable reference is obtained, use the data
access functions to get the data. If the variable does not exist, it will be
created when it is read from or written to.
jseContext - The context to use for this interpret.
objectVar - The object to get a property from.
Name - The name of the object property.
DType - This argument specifies the type of object property variable

that will be created if the variable does not already exist.
Note: this function has been deprecated in version 4.03. Internally it
calls jseMemberEx() with the flags parameter set to jseDefault.

RETURN A jseVariable pointer to the requested object property, or NULL on
failure. If the property does not exist it will be created. Failure means
the interpreter ran out of memory.

SEE ALSO jseMemberEx, jseGetMember, jseGetMemberEx, jseIndexMember,
jseIndexMemberEx, jseGetNextMember, jseDeleteMember,
jseGetIndexMember, jseGetIndexMemberEx

138 ScriptEase ISDK/C

jseMemberEx
DESCRIPTION Get a ScriptEase variable reference to a ScriptEase structure element.

SYNTAX jseVariable
jseMemberEx(jseContext jsecontext,
 jseVariable objectVar,
 const jsechar *Name,
 jseDataType DType uword16 flags)

COMMENTS This routine gets a ScriptEase variable reference for an object's
property. Once the jseVariable reference is attained, use the data access
functions to get the data. If the variable does not exist, it will be
created.
jseContext - The context to use for this interpret.
objectVar - The object to get a property from.
Name - The name of the object property.
DType - This argument specifies the type of object property variable

that will be created.
flags - this should be set to one of the following:
jseCreateVar - the variable must be explicitly destroyed with

jseDestroyVariable() when you are done with it or else an
internal error will occur.

jseDefault - the variable will be freed when the function exits.

RETURN A jseVariable pointer to the requested object property, or NULL on
failure. If the property does not exist it will be created. Failure means
the interpreter ran out of memory.

SEE ALSO jseGetMember, jseGetNextMember, jseDeleteMember

API Functions 139

jseMemberWrapperFunction
DESCRIPTION Attach a new object method to a wrapper function.

SYNTAX jseVariable
jseMemberWrapperFunction(jseContext jsecontext,
 jseVariable objectVar
 const jsechar _FAR *functionName
 jseLibraryFunction funcPtr,
 sword8 minVariableCount,
 sword8 maxVariableCount,
 uword8 varAttributes, uword8 funcAttributes,
 void _FAR_ * fData);

COMMENTS This routine creates a function variable as an object method.
jseContext - The current executing context.
objectVar - The object that the function is a method of. Use NULL to

make it a global function.
functionName - is the name of your function in a script. It should be a

string such as "GetString". Your users will refer to the function
by this name.

funcPtr - is a pointer to the function called by the ScriptEase
Interpreter Engine, i.e., the name of the wrapper function that
corresponds to the function listed above.

RETURN If successful, this returns the jseVariable created. If there is not enough
system memory to create the variable (extremely unlikely), NULL will
be returned.

140 ScriptEase ISDK/C

jsePreDefineNumber
DESCRIPTION #define a string alias for a ScriptEase number value.

SYNTAX void
jsePreDefineNumber(jseContext jsecontext,
 const jsechar FAR_ *findString,
 jseNumber replaceL);

COMMENTS Use this routine to define a float for use by interpreted scripts. When
parsing the ScriptEase source, any instance of findString (case
sensitive) that might otherwise refer to a variable is replaced with the
value for replaceL.
This use:
jsePreDefineNumber(jsecontext,"PI",3.1415927);
is similar to the script having this statement:
#define PI 3.1415927
jseContext - The context to add this define to.
findString - NULL-terminated string to match in source.
replaceL - Number to substitute for findString when parsing source.
You can use this function to override the #define statements in a script.

RETURN None.

SEE ALSO jsePreDefineLong, jsePreDefineString

jsePreDefineLong
DESCRIPTION #define a string alias for a long-integer value.

SYNTAX void
jsePreDefineLong(jseContext jsecontext,
 const jsechar FAR_ *FindString,
 slong ReplaceL);

COMMENTS Use this routine to define a long for use by interpreted scripts. When
parsing the ScriptEase source, any instance of FindString (case
sensitive) that might otherwise refer to a variable is replaced with the
integer value for ReplaceL.
This use:
 jsePreDefineLong(jsecontext,"MILLION",1000000);
is similar to the ScriptEase source having a statement such as:
 #define MILLION 1000000

jseContext - The context to add this define to.
FindString - NULL-terminated string to match in ScriptEase source.
ReplaceL - Integer to substitute for FindString when parsing

ScriptEase source.

API Functions 141

You can use this function to override the #define statements in a script.
RETURN None.

SEE ALSO jsePredefineNumber, jsePredefineString

jsePreDefineString
DESCRIPTION Define a JavaScript string value.

SYNTAX void
jsePreDefineString(jseContext jsecontext,
 const jsechar FAR_ *findString,
 const jsechar *replaceString);

COMMENTS Use this routine to define a string for use by interpreted scripts. When
parsing the source, any instance of findString (case sensitive) that
might otherwise refer to a variable is replaced with replaceString. This
use:
jsePreDefineString(jsecontext,"VERSION_STR",
 "Version 1.2.4 Beta");
is similar to the source having a statement such as:
#define VERSION_STR "Version 1.2.4 Beta"
jseContext - The current executing context to add this define to,

probably the root context.
FindString - NULL-terminated string to match in source.
ReplaceString - String to substitute for findString when parsing

source. The replace string may be any sequence. You can use this
function in your application to override the #define statements in
any script it runs.

#define is used for text-replacement only, i.e., before the script is
interpreted, all instances of findString are replaced with
"replaceString," and the resulting text is interpreted as ScriptEase code.

RETURN None.

SEE ALSO jsePredefineNumber, jsePredefineLong

142 ScriptEase ISDK/C

jsePreviousContext
DESCRIPTION Retrieve the previous context.

SYNTAX jseContext
jsePreviousContext(jseContext jsecontext);

COMMENTS Given the current context, jsePreviousContext will find the previous
one. The previous context will be the one that represents the script
function that called the current function.
jseContext - The current executing context.

RETURN The previous ScriptEase context, or NULL if there wasn't one.

jsePush
DESCRIPTION Push a jseVariable onto a jseStack.

SYNTAX

void
jsePush(jseStack jsestack,
 jseVariable var,
 jsebool destroyWhenFinished);

COMMENTS
This function pushes a jseVariable onto the jseStack.
stack - The stack to receive the variable. var - The jseVariable to push

onto the stack.
destroyWhenFinished - A boolean flag, specifying whether or not the

jseVariable on the stack should be destroyed when the stack is
destroyed. You only set this to true if you are responsible for
destroying a variable and wish to get rid of this responsibility.
For instance, if you used jseCreateVariable() to construct a
variable to pass as a parameter. By telling this routine to destroy
it when done, you no longer have to worry about destroying it
yourself.

RETURN
None.

SEE ALSO jseCreateStack, jseDestroyStack

API Functions 143

jsePutBoolean
DESCRIPTION Put boolean data into a jseVariable.

SYNTAX void
jsePutBoolean(jseContext jsecontext,
 jseVariable variable,
 jsebool value);

COMMENTS This function is used to write data to a jseTypeBoolean variable.
jseContext - The current executing context.
variable - The ScriptEase variable to write.
value - Value to set the variable to; use True or False

RETURN None.

SEE ALSO jseGetBoolean

jsePutBuffer
DESCRIPTION Put buffer data into a jseVariable.

SYNTAX void jsePutBuffer(jseContext jsecontext,
 jseVariable variable,
 const void _HUGE_ *data,
 ulong size);

COMMENTS This function writes data to a jseTypeBuffer variable. jseContext - The
current executing context.

variable - The ScriptEase variable to write data to.
data - Pointer to buffer data.
size - Size of the data buffer, in bytes.

RETURN None.

SEE ALSO jseGetBuffer, jseGetWritableBuffer

144 ScriptEase ISDK/C

jsePutByte
DESCRIPTION Write data to a variable as a byte.

SYNTAX void
jsePutByte(jseContext jsecontext,
 jseVariable variable,
 ubyte byteValue);

COMMENTS This function is used to write data to a variable of jseTypeNumber.
jseContext - The current executing context.
variable - The ScriptEase variable to write.
byteValue - Value to which the variable is to be set.

RETURN None.
SEE ALSO jseGetNumber, jsePutNumber, jsePutLong

jsePutNumber
DESCRIPTION Write numeric data to a jseVariable.

SYNTAX void
jsePutNumber(jseContext jsecontext,
 jseVariable variable,
 jseNumber number);

COMMENTS This function is used to write data to a jseTypeNumber variable.

jseContext - The current executing context.
variable - The ScriptEase variable to write to.
number - Value to which the variable is to be set.

RETURN None.

SEE ALSO jseGetNumber, jsePutLong, jsePutByte

jsePutLong
DESCRIPTION Write signed-long data to a jseVariable.

SYNTAX void
jsePutLong(jseContext jsecontext, jseVariable
variable, slong longvalue);

COMMENTS This function is used to write data to a jseTypeNumber variable.
jseContext - The current executing context.
variable - The ScriptEase variable to write.
longvalue - Value to set the variable to.
None.

API Functions 145

RETURN

SEE ALSO jseGetLong

jsePutString
DESCRIPTION Write string to a jseVariable.

SYNTAX void
jsePutString(jseContext jsecontext,
 jseVariable variable,
 const jsechar _HUGE_ *data);

COMMENTS This function writes string data to a jseTypeString variable. The length
of the string will be assumed to be the number of characters before the
first '\0' character. If you wish to explicitly pass a string length, use
jsePutStringLength().

jseContext - The current executing context.
variable - The ScriptEase variable to write.
data - Value to set the variable to.

RETURN None.
SEE ALSO jsePutStringLength, jseGetString, jseGetWritableString

jsePutStringLength
DESCRIPTION Write string to a ScriptEase variable.

SYNTAX void
jsePutStringLength(jseContext jsecontext,
 jseVariable variable,
 const jsechar _HUGE_ *data,
 ulong size);

COMMENTS This function writes string data to a jseTypeString variable.
jseContext - The current executing context.
variable - The ScriptEase variable to write.
data - Value to set the variable to.
size - The length of the string in data.

RETURN None.

SEE ALSO jsePutString, jseGetString, jseGetWritableString

146 ScriptEase ISDK/C

jseQuitFlagged
DESCRIPTION Check if current context has been flagged to terminate execution.

SYNTAX uint
jseQuitFlagged(jseContext jsecontext);

COMMENTS jseContext - The current executing context to use for this interpret.
returns 0 (False) if a call has not been made on this context to
Exit (jseLibSetExitFlag()), or to report an error via any of the
error reporting functions (jseLibSetErrorFlag() or
jseLibErrorPrintf()). It is not necessary to call these functions
after the jseXXX library functions, which include error status (if
applicable) in their return codes.

This function can be valuable during debugging (e.g., in assert()
statements) to ensure that the jseContext is valid. If you add functions
that may set the error or exit flags and that don't indicate this
information in their return codes, or if you are not checking return
codes in some sections, then jseQuitFlagged() may be used.
Another use for this function is the case where your context may be
handled in a callback, so you can save the context in a global and
check later if there was a problem.
If your script should exit due to an exit flag or due to an error, then this
function will return one of the following non-0 (non-False) values:
 JSE_CONTEXT_ERROR // ERROR flag set
 JSE_CONTEXT_EXIT // EXIT flag set

RETURN (0) False if this context is not flagged for exit due a call to
jseLibSetExitFlag() or to an error call, else return reason for exit,
indicated by one of the values described above.

SEE ALSO jseLibSetErrorFlag, jseLibSetExitFlag, jseLibErrorPrintf

API Functions 147

jseReturnNumber
DESCRIPTION Return a number from a ScriptEase wrapper function.

SYNTAX void
jseReturnNumber(jseContext jsecontext,
 jseNumber number);

COMMENTS This function is used to return a numeric value from a ScriptEase
wrapper function. If you call any of the jseReturnXXX() functions
again, the last call takes precedence. It creates a variable of type
jseTypeNumber, assigns the number to it, and makes that the return
from the wrapper function. It is not like 'exit()' in that your wrapper
function continues executing. Typically, a call to this function is the
last thing your wrapper function does before returning.
jseContext - The current executing context for this wrapper function.

Use the value supplied to the wrapper function by the ScriptEase
Engine.

number - The numeric value to return.

RETURN None.

jseReturnLong
DESCRIPTION Return a long from a ScriptEase wrapper function.

SYNTAX void
jseReturnLong(jseContext jsecontext,
 slong longValue);

COMMENTS This function is used to return a long value from a ScriptEase wrapper
function. If you call any of the jseReturnXXX() functions again, the
last call takes precedence. It creates a variable of type jseTypeNumber,
assigns the longValue to it, and makes that the return from the wrapper
function. It is not like 'exit()' in that your wrapper function continues
executing. Typically, a call to this function is the last thing your
wrapper function does before returning.
jseContext - The current executing context. Use the value supplied to

the wrapper function by the ScriptEase Engine.
longValue - The long value to return.

RETURN None.
SEE ALSO jseGetLong

148 ScriptEase ISDK/C

jseReturnVar
DESCRIPTION Returns a jseVariable from a wrapper function.

SYNTAX void
jseReturnVar(jseContext jsecontext,
 jseVariable variable,
 jsereturnAction retAction);

COMMENTS This function is used to generate a return value from a ScriptEase
wrapper function. It will return the specified ScriptEase variable. If
you call any of the jseReturnXXX() functions more than once, the last
call takes precedence.
jseContext - The context executing context. Use the value supplied to

the wrapper function by the ScriptEase Engine.
variable - The variable to be returned from this function.
retAction - Specifies how the variable to be returned shall be treated

once you are done using it. The return action can be one of the
following values:

jseRetTempVar - This is variable you own and are expected to delete.
By passing it along using this flag, you no longer have to delete
it. You have passed ownership to the system and it will delete it
when it is finished with it.

jseRetCopyToTempVar - Create a new variable, copy to that variable
(with jseAssign()), and then return that new variable to be
destroyed when it is popped. Don't return this variable; return the
copy. If you own this variable and are expected to delete it, you
still must do so.

jseRetKeepLVar - This is similar to jseRetCopyToTempVar in that
you still own the variable and must delete if appropriate. It
differs in that no copy is made. If you change the variable (such
as with jseConvert()), the change will be reflected in the value
returned from the function.

RETURN None.

API Functions 149

jseSetArrayLength
DESCRIPTION Set the length of a string, buffer or numerically-indexed object.

SYNTAX void
jseSetArrayLength(jseContext jsecontext,
 jseVariable variable,
 slong MinIndex,
 ulong length);

COMMENTS This routine sets the length of a ScriptEase string, buffer or
numerically-indexed object. This function will create new array entries
if they are needed, and destroy those that are no longer needed, i.e.,
that are outside of the bounds of the new array.

jseContext - The current executing context.
variable - the ScriptEase variable for which the length will be set.
MinIndex - the index value to use for the first element of the array.

Must be less than or equal to zero.
length - length of the string or buffer, or one greater than the

maximum numerically indexed property or an object. Must be
greater than or equal to zero.

RETURN None.

SEE ALSO jseGetArrayLength

150 ScriptEase ISDK/C

jseSetAttributes
DESCRIPTION Set the attributes of a jseVariable.

SYNTAX void
jseSetAttributes(jseContext jsecontext,
 jseVariable variable,
 jseAttributes attr);

COMMENTS jseContext - The current executing context.
variable - The variable to have its attributes updated.
attr - The attributes to be applied to variable.
The return action can be any of the following values OR'ed together:
jseDefaultAttr - Standard ECMAScript behavior.
jseDontEnum - Ignore this member during for...in enumerations.
jseDontDelete - Cannot be deleted by the delete operator.
jseReadOnly - Makes the variable read only.
jseImplicitThis - Puts the 'this' variable in the scoping chain. This only

applies to calling this member if it is in fact a function.
jseImplicitParents - please see the definition of this flag under

jseVarAttributes in the Types & Macros chapter for more
information.

RETURN None.

JseSetGlobalObject
DESCRIPTION By calling jseSetGlobalObject() and then calling jseInterpret(), you can

determine where the functions in that script go. If you interpret several
scripts, each with their own global object, the functions will get put
into their own space.

SYNTAX Void jseSetGlobalObject(jseContext jsecontext,
 jseVariable variable)

COMMENTS This function may leave temporary variables on the local context, to be
cleaned up only when leaving the local context. So if this function is
called from the top-level context (i.e., not within a wrapper function), it
is more efficient to use:
jseSetGlobalObjectEx(jsecontext,
 variable,
 jseCreateVar).

SEE ALSO Appendix II, Topic 3…, Changing The Global Object

API Functions 151

jseTerminateEngine
DESCRIPTION A call to terminate the ScriptEase Interpreter Engine.

SYNTAX void
jseTerminateEngine(void);

COMMENTS Call this function after all jseContext links have been terminated. This
function cleans up all the resources allocated and initialized by
jseInitializeEngine().

RETURN None.

SEE ALSO jseInitializeEngine

jseTerminateExternalLink
DESCRIPTION Terminate a link to a given jseContext.

SYNTAX void
jseTerminateExternalLink(jseContext jsecontext);

COMMENTS This routine is used to terminate the given jseContext. After this call,
any references to the supplied context are invalid and will cause an
error to occur.
jseContext - The ScriptEase context to destroy.

RETURN None.

SEE ALSO jseInitializeExternalLink, jseGetExternalLinkparameters

152 ScriptEase ISDK/C

jseVarNeed
DESCRIPTION Check the type of a given ScriptEase argument variable.

SYNTAX jsebool
jseVarNeed(jseContext jsecontext,
 jseVariable variable,
 jseVarNeeded need);

COMMENTS This function verifies that a function argument to a ScriptEase wrapper
function is of a given type.

jseContext - The current executing context. Use the value supplied to
the wrapper function by the ScriptEase Engine.

variable - The variable being checked for type.
need - The type of the argument you are trying to verify. It can be one

of the values specified in jseFuncVarNeed.

RETURN True if the variable specified is of the type specified or can be
converted according to the flags described in jseFuncVarNeed. False
otherwise and a error message will have been called.

SEE ALSO jseGetVar, jseFuncVar, jseFuncVarNeed

ScriptEase JavaScript Language 153

ScriptEase JavaScript Language
ScriptEase is a scripting or programming language that allows a computer user or
programmer to write simple scripts with tremendous power. The guiding principles for
ScriptEase are simplicity and power which add up to easy elegance in scripting. Scripts
are much easier to write and use than the source code for compiled languages such as
C++.

ScriptEase uses JavaScript, one of the most popular scripting language in today's world,
as its core language. In fact, ScriptEase uses the ECMAScript standard for JavaScript.
ECMAScript is the core version of JavaScript which has been standardized by the
European Computer Manufacturers Association and is the only standardization of
JavaScript. ScriptEase closely follows and will follow this standardized JavaScript.

ScriptEase is not limited to JavaScript, as good as it may be. ScriptEase has enhanced the
power of JavaScript by adding two objects, Clib and SElib, that have the power of the C
programming language. Indeed, ScriptEase implements a scripting version of C which
has the power of C in a simple scripting language. With the power of C readily available,
computer users or programmers are able to accomplish any tasks that they pursue. Both
JavaScript and C script can be intermingled in ScriptEase code, which allows scripters
flexibility, power, and simplicity.

The following line is a complete script which could be saved as a script file and run as a
program. The program simply displays a message, "A simple one line script," on a
computer screen.

Screen.writeln("A simple one line script")
The following code fragment1 uses a more structured approach to accomplish the same
task. JavaScript and C share similar programming styles, such as the main() function
shown in this fragment.

function main()
{

Clib.puts("A simple one line script");
}

A ScriptEase script may be written using a very straightforward scripting approach as
shown in the first example above, which is similar to the simple scripting of a DOS batch
file. A second line could be added to the single line as shown in the following fragment.
Screen.writeln("A simple one line script")
Clib.puts("Now there are two lines")

1 "Code fragment" and "fragment" are used interchangeably. They both refer to lines

of script or code that perform some scripting or programming task. The lines of code
may or may not be complete scripts or programs.

154 ScriptEase ISDK/C

The example using the main() function could be expanded as follows.
function main()
{

Clib.puts("A simple one line script");
Screen.writeln("Now there are two lines");

}
These examples illustrate how easily ScriptEase can be used in a simple scripting mode
and how easily the power of functions can be put in a script, and not just the power of
functions, but the power of C. They show how easily JavaScript and C script can be
intermingled, since C is implemented as a JavaScript object. Functions and other
programming concepts are explained in the following descriptions of the ScriptEase
language. A tutorial section provides illustrations of scripts in addition to the example
code fragments in the text.

Most JavaScript, other than ScriptEase, is part of web browsers and is used while users
are connected to the Internet. Usually people are unaware that JavaScript is commonly
being executed on their computers when they are connected to various Internet sites. Not
only are they unaware, they are unable to write and execute scripts on their computers for
their own uses. ScriptEase steps in at this point. Users do not have to be connected to the
Internet to use ScriptEase, as they must be with other JavaScript interpreters.

Whether the desire is to write a simple script to copy a document to a backup folder or to
write an entire data processing program, ScriptEase can do the job or any other job
desired. ScriptEase has joined JavaScript and C. Further, ScriptEase adds commands and
functions not available in standard implementations of either. In short, ScriptEase is the
most powerful and advanced scripting language available today, and it achieves its power
while still being simple to use.

The following sections of this manual will help you to start enjoying the power of
ScriptEase.

Basics
Case sensitivity

ScriptEase is case sensitive. A variable named "testvar" is a different variable than one
named "TestVar", and both of them can exist in a script at the same time. Thus, the
following code fragment defines two separate variables:
var testvar = 5
var TestVar = "five"
All identifiers in ScriptEase are case sensitive. For example, to display the word "dog" on
the screen, the Screen.write() method could be used: Screen.write("dog"). But, if the
capitalization is changed to something like, Screen.Write("dog"), then the ScriptEase
interpreter generates an error message. Control statements and preprocessor directives are
also case sensitive. For example, the statement "while" is valid, but the word "While" is
not. The directive "#if" works, but the letters "#IF" fail.

ScriptEase JavaScript Language 155

Whitespace characters
Whitespace characters, space, tab, carriage-return and new-line, govern the spacing and
placement of text. Whitespace makes code more readable for humans, but is ignored by
the interpreter2.

Lines of script end with a carriage-return, and each line is usually a separate statement.
(Technically, in many editors, lines end with a carriage-return and linefeed pair, "\r\n".)
Since the interpreter usually sees one or more whitespace characters between identifiers
as simply whitespace, the following ScriptEase statements are equivalent to each other:
var x=a+b
var x = a + b
var x = a + b
var x = a

+ b
Whitespace separates identifiers into separate entities. For example, "ab" is one variable
name, and "a b" is two. Thus, the fragment, "var a b = 2" is valid, but "var ab = 2"
is not.

Many programmers use all spaces and no tabs, because tab size settings vary from editor
to editor and programmer to programmer. By using spaces only, the format of a script
will look the same on all editors. All scripts provided by Nombas with ScriptEase use
spaces only.

Comments
A comment is text in a script to be read by humans and not the interpreter which skips
over comments. Comments help people to understand the purpose and program flow of a
program. Good comments, which explain lines of code well, help people alter code that
they have written in the past or that was written by someone else.

There are two formats for comments: end of line comments and block comments. End of
line comments begin with two slash characters, "//". Any text after two consecutive slash
characters is ignored to the end of the current line. The interpreter begins interpreting text
as code on the next line. Block comments are enclosed within a beginning block
comment, "/*", and an end of block comment, "*/". Any text between these markers is a
comment, even if the comment extends over multiple lines. Block comments may not be
nested within block comments, but end of line comments can exist within block
comments.

2 The phrase, "the interpreter," is used synonymously with, "the ScriptEase

interpreter." ScriptEase, like JavaScript and many other popular languages, is an
interpreted language.

156 ScriptEase ISDK/C

The following code fragments are examples of valid comments:
// this is an end of line comment

/* this is a block comment
 This is one big comment block.
 // this comment is okay inside the block
 Isn't it pretty?
*/

var FavoriteAnimal = "dog"; // except for poodles

//This line is a comment but
var TestStr = "this line is not a comment";

Expressions, statements, and blocks
An expression or statement is any sequence of code that performs a computation or an
action, such as the code "var TestSum = 4 + 3" which computes a sum and assigns it
to a variable. ScriptEase code is executed one statement at a time in the order in which it
is read. Many programmers put semicolons at the end of statements, although they are not
required. Each statement is usually written on a separate line, with or without semicolons,
to make scripts easier to read and edit.

A statement block is a group of statements enclosed in curly braces, "{}", which indicate
that the enclosed individual statements are a group and are to be treated as one statement.
A block can be used anywhere that a single statement can.

A while statement causes the statement after it to be executed in a loop. By enclosing
multiple statements in curly braces, they are treated as one statement and are executed in
the while loop. The following fragment illustrates:
while(ThereAreUncalledNamesOnTheList() == True)
{

var name = GetNameFromTheList();
CallthePerson(name);
LeaveTheMessage();

}

All three lines after the while statement are treated as a unit. If the braces were omitted,
the while loop would only apply to the first line. With the braces, the script goes through
all lines until everyone on the list has been called. Without the braces, the script goes
through all names on the list, but only the last one is called. Two very different
procedures.

Statements within blocks are often indented for easier reading.

ScriptEase JavaScript Language 157

Identifiers
Identifiers are merely names for variables and functions. Programmers must know the
names of built in variables and functions to use them in scripts and must know some rules
about identifiers to define their own variables and functions. The following rules are
simple and intuitive.
q Identifiers may use only ASCII letters, upper or lower case, digits, the underscore,

"_", and the dollar sign, "$". That is, they may use only characters from the
following sets of characters.

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"_$"

q Identifiers may not use letters of the following characters.
"+-<>&|=!*/%^~?:{};()[].'"'#,"

q Identifiers must begin with a letter, underscore, or dollar sign, but may have digits
anywhere else.

q Identifiers may not have whitespace in them since whitespace separates identifiers
for the interpreter.

q Identifiers may be as long a programmer needs.
The following identifiers, variables and functions, are valid:
Sid
Nancy7436
annualReport
sid_and_nancy_prepared_the_annualReport
$alice
CalculateTotal()
$SubtractLess()
Divide$All()

The following identifiers, variables and functions, are not valid:
1sid
2nancy
this&that
Sid and Nancy
ratsAndCats?
=Total()
(Minus)()
Add Both Figures()

158 ScriptEase ISDK/C

Prohibited identifiers
The following words have special meaning for the interpreter and cannot be used as
identifiers, neither as variable nor function names:

break case catch class const continue debugger

default delete do else enum export extends

False finally for function if import in

new NULL return super switch this throw

True try typeof while with var void

Variables
A variable is an identifier to which data may be assigned. Variables are used to store and
represent information in a script. Variables may change their values, but literals may not.
For example, if programmers want to display a name literally, they must use something
like the following fragment multiple times.
Screen.writeln("Rumpelstiltskin Henry Constantinople")
But they could use a variable to make their task easier, as in the following.
var Name = "Rumpelstiltskin Henry Constantinople"
Screen.write(Name)
Then they can use shorter lines of code for display and use the same lines of code
repeatedly by simply changing the contents of the variable Name.

Variable scope
Variables in ScriptEase may be either global or local. Global variables may be accessed
and modified from anywhere in a script. Local variables may only be accessed from the
functions in which they are created. There are no absolute rules for preferring or using
global or local variables. Each type has merit. In general, programmers prefer to use local
variables when reasonable since they facilitate modular code that is easier to alter and
develop over time. It is generally easier to understand how local variables are used in a
single function than how global variables are used throughout an entire program. Further,
local variables conserve system resources.

To make a local variable, declare it in a function using the var keyword:
var perfectNumber;
A value may be assigned to a variable when it is declared:
var perfectNumber = 28;
The default behavior of ScriptEase is that variables declared outside of any function or
inside a function without the var keyword are global variables. However, this behavior
can be changed by the DefaultLocalVariables and RequireVarKeyword settings of the
#option preprocessor directive. This directive is explained in the section on
preprocessing. For now, consider the following code fragment.

ScriptEase JavaScript Language 159

var a = 1;
function main()
{

b = 1;
var d = 3;
someFunction(d);

}

function someFunction(e)
{

var c = 2
...

}
In this example, a and b are both global variables, since a is declared outside of a
function and b is defined without the var keyword. The variables, d and c, are both local,
since they are defined within functions with the var keyword. The variable c may not be
used in the main() function, since it is undefined in the scope of that function. The
variable d may be used in the main() function and is explicitly passed as an argument to
someFunction() as the parameter e. The following lines show which variables are
available to the two functions:
main(): a, b, d
someFunction(): a, b, c, e
It is possible, though not usually a good idea, to have local and global variables with the
same name. In such a case, a global variable must be referenced as a property of the
global object, and the variable name used by itself refers to the local variable. In the
fragment above, the global variable a can be referenced anywhere in its script by using:
"global.a".

Functions
Functions are identified by names, as variables are. Functions perform script operations,
and variables store data. Functions do the work of a script and will be discussed in more
detail later. The reason they are mentioned here is simply to point out that they have
identifiers, names, that follow the same rules for identifiers as variable names do.

Function scope
Functions are all global in scope, much like global variables. A function may not be
declared within another function so that its scope is merely within a certain function or
section of a script. All functions may be called from anywhere in a script. If it is helpful,
think of functions as methods of the global object. The following two code fragments do
exactly the same thing. The first calls a function, SumTwo(), as a function, and the
second calls SumTwo() as a method of the global object.
// fragment one
function SumTwo(a, b)
{

160 ScriptEase ISDK/C

return a + b
}

Screen.writeln(SumTwo(3, 4))

// fragment two
function SumTwo(a, b)
{

return a + b
}

Screen.writeln(global.SumTwo(3, 4))

Data types
Data types in ScriptEase can be classified into three groupings: primitive, composite, and
special. In a script, data can be represented by literals or variables. The following lines
illustrates variables and literals:
var TestVar = 14;
var aString = "test string";
The variable TestVar is assigned the literal 14, and the variable aString is assigned the
literal "test string". After these assignments of literal values to variables, the variables can
be used anywhere in a script where the literal values could to be used.

In the fragment above which defines and uses the function SumTwo(), the literals, 3 and
4, are passed as arguments to the function SumTwo() which has corresponding
parameters, a and b. The parameters, a and b, are variables for the function that hold the
literal values that were passed to it.

Data types need to be understood in terms of their literal representations in a script and of
their characteristics as variables.

Data , in literal or variable form, is assigned to a variable with an assignment operator
which is often merely an equal sign, "=" as the following lines illustrate.
var happyVariable = 7;
var joyfulVariable = "free chocolate";
var theWorldIsFlat = True;
var happyToo = happyVariable;
The first time a variable is used, its type is determined by the interpreter, and the type
remains until a later assignment changes the type automatically. The example above
creates three variables, each of a different type. The first is a number, the second is a
string, and the third is a boolean variable. Variable types are described below. Since
ScriptEase automatically converts variables from one type to another when needed,
programmers normally do not have to worry about type conversions as they do in
strongly typed languages, such as C.

ScriptEase JavaScript Language 161

Primitive data types
Variables that have primitive data types pass their data by value, by actually copying the
data to the new location. The following fragment illustrates:
var a = "abc";
var b = ReturnValue(a);

function ReturnValue(c)
{

return c;
}
After "abc" is assigned to variable a, two copies of the string "abc" exist, the original
literal and the copy in the variable a. While the function ReturnValue is active, the
parameter/variable c has a copy, and three copies of the string "abc" exist. If c were to be
changed in such a function, variable a, which was passed as an argument to the function,
would remain unchanged. After the function ReturnValue is finished, a copy of "abc" is
in the variable b, but the copy in the variable c in the function is gone because the
function is finished. During the execution of the fragment, as many as three copies of
"abc" exist at one time.

The primitive data types are: Number, Boolean, and String.

Number
Integer
Integers are whole numbers. Decimal integers, such as 1 or 10, are the most common
numbers encountered in daily life. ScriptEase has three notations for integers: decimal,
hexadecimal, and octal.
Decimal
Decimal notation is the way people write numbers in everyday life and uses base 10
digits from the set of 0-9. Examples are:
1, 10, 0, and 999
var a = 101;
Hexadecimal
Hexadecimal notation uses base 16 digits from the sets of 0-9, A-F, and a-f. These digits
are preceded by 0x. ScriptEase is not case sensitive when it comes to hexadecimal
numbers. Examples are:
0x1, 0x01, 0x100, 0x1F, 0x1f, 0xABCD
var a = 0x1b2E;
Octal
Octal notation uses base 8 digits from the set of 0-7. These digits are preceded by 0.
Examples are:
00, 05, and 077
var a = 0143;
Floating point
Floating point numbers are numbers with fractional parts which are often indicated by a
period, for example, 10.33. Floating point numbers are often referred to as floats.

162 ScriptEase ISDK/C

Decimal
Decimal floats use the same digits as decimal integers but allow a period to indicate a
fractional part. Examples are:
0.32, 1.44, and 99.44
var a = 100.55 + .45;
Scientific
Scientific floats are often used in the scientific community for very large or small
numbers. They use the same digits as decimals plus exponential notation. Scientific
notation is sometimes referred to as exponential notation. Examples are:
4.087e2, 4.087E2, 4.087e+2, and 4.087E-2
var a = 5.321e33 + 9.333e-2;

Boolean
Booleans may have only one of two possible values: false or true. Since ScriptEase
automatically converts values when appropriate, Booleans can be used as they are in
languages such as C. Namely, false is zero, and true is non-zero. A script is more precise
when it uses the actual ScriptEase values, false and true, but it will work using the
concepts of zero and not zero. When a Boolean is used in a numeric context, it is
converted to 0, if it is false, and 1, if it is true.

String
A String is a series of characters linked together. A string is written using quotation
marks, for example: "I am a string", 'so am I', 'me too', and "344". The string "344" is
different from the number 344. The first is an array of characters, and the second is a
value that may be used in numerical calculations.

ScriptEase automatically converts strings to numbers and numbers to string, depending
on context. If a number is used in a string context, it is converted to a string. If a string is
used in a number context, it is converted to a numeric value. Automatic type conversion
is discussed more fully in a later section

Strings, though classified as a primitive, are actually a hybrid type that shares
characteristics of primitive and composite data types. Strings are discussed more fully a
later section.

Composite data types
Whereas primitive types are passed by value, composite types are passed by reference.
When a composite type is assigned to a variable or passed to a parameter, only a
reference that points to its data is passed.

ScriptEase JavaScript Language 163

The following fragment illustrates.
var AnObj = new Object;
AnObj.name = "Joe";
AnObj.old = ReturnName(AnObj)

function ReturnName(CurObj)
{

return CurObj.name
}
After the object AnObj is created, the string "Joe" is assigned, by value since a property is
a variable within an Object, to the property AnObj.name. Two copies of the string "Joe"
exist. When AnObj is passed to the function ReturnName, it is passed by reference.
CurObj does not receive a copy of the Object, but only a reference to the Object. With
this reference, CurObj can access every property and method of the original. If
CurObj.name were to be changed while the function was executing, then AnObj.name
would be changed at the same time. When AnObj.old receives the return from the
function, the return is assigned by value, and a copy of the string "Joe" transferred to the
property. Thus, AnObj holds two copies of the string "Joe": one in the property .name and
one in the property .old. Three total copies of "Joe" exist, counting the original string
literal.

Two commonly used composite data types are: Object and Array.

Object
An object is a compound data type, consisting of one or more pieces of data of any type
which are grouped together in an object. Data that are part of an object are called
properties of the object. The Object data type is similar to the structure data type in C and
in previous versions of ScriptEase. The object data type also allows functions, called
methods, to be used as object properties. Indeed, in ScriptEase, functions are considered
to be like variables. But for practical programming, think of objects as having methods,
which are functions, and properties, which are variables and constants.

Objects and their characteristics are discussed more fully in a later section.

Array
An array is a series of data stored in a variable that is accessed using index numbers that
indicate particular data. The following fragments illustrate the storage of the data in
separate variables or in one array variable:
var Test0 = "one";
var Test1 = "two";
var Test2 = "three";

var Test = new Array;
Test[0] = "one";
Test[1] = "two";
Test[2] = "three";

164 ScriptEase ISDK/C

After either fragment is executed, the three strings are stored for later use. In the first
fragment, three separate variables have the three separate strings. These variables must be
used separately. In the second fragment, one variable holds all three strings. This Array
variable can be used as one unit, and the strings can be accessed individually. The
similarities, in grouping, between Arrays and Objects is more than slight. In fact, Arrays
and Objects are both objects in ScriptEase with different notations for accessing
properties. For practical programming, Arrays may be considered as a data type of their
own.

Arrays and their characteristics are discussed more fully in a later section.

Special values
undefined
If a variable is created or accessed with nothing assigned to it, it is of type undefined. An
undefined variable merely occupies space until a value is assigned to it. When a variable
is assigned a value, it is assigned a type according to the value assigned. Though
variables may be of type undefined, there is no literal representation for undefined.
Consider the following invalid fragment.
var test;
if (typeof test == "undefined")

Screen.writeln("test is undefined")
After var test is declared, it is undefined since no value has been assigned to it. But, the
test, "test == undefined", is invalid because there is no way to literally represent
undefined.

NULL
NULL is a special data type that indicates that a variable is empty, a condition that is
different from being undefined. A null variable holds no value, though it might have
previously. The null type is represented literally by the identifier, null. Since ScriptEase
automatically converts data types, null is both useful and versatile. The code fragment
above will work if "undefined" is changed to "null", as shown in the following:
var test = null;
if(test==null)

Screen.writeln("It is null.");
Since null has a literal representation, assignments like the following are valid:
var test = null;
Any variable that has been assigned a value of null can be compared to the null literal.

NaN
The NaN type means "Not a Number". NaN is merely an acronym for the phrase.
However, NaN does not have a literal representation. To test for NaN, the function,
isNaN(), must be used, as illustrated in the following fragment:
var Test = "a string";
if (isNaN(parseInt(Test)))

Screen.writeln("Test is Not a Number");

ScriptEase JavaScript Language 165

When the parseInt() function tries to parse the string "a string" into an integer, it returns
NaN, since "a string" does not represent a number like the string "22" does.

Number constants
Several numeric constants can be accessed as properties of the Number object, though
they do not have a literal representation.

Constant Value Description

Number.MAX_VALUE 1.7976931348623157e+308 Largest number (positive)

Number.MIN_VALUE 2.2250738585072014e-308 Smallest positive non-zero
value

Number.NaN NaN Not a Number

Number.POSITIVE_IN
FINITY

Infinity Number above
MAX_VALUE

Number.NEGATIVE_I
NFINITY

Infinity Number below
MIN_VALUE

Automatic type conversion
When a variable is used in a context where it makes sense to convert it to a different type,
ScriptEase automatically converts the variable to the appropriate type. Such conversions
most commonly happen with numbers and strings. For example:
"dog" + "house" == "doghouse" // two strings are joined
"dog" + 4 == "dog4" // a number is converted
4 + "4" == "44" // to a string
4 + 4 == 8 // two numbers are added
23 - "17" == 6 // a string is converted to a number
Converting numbers to strings is fairly straightforward. However, when converting
strings to numbers there are several limitations. While subtracting a string from a number
or a number from a string converts the string to a number and subtracts the two, adding
the two converts the number to a string and concatenates them. String always convert to a
base 10 number and must not contain any characters other than digits. The string "110n"
will not convert to a number, because the ScriptEase interpreter does not know what to
make of the "n" character.

You can specify more stringent conversions by using the global methods, parseInt() and
parseFloat() methods. Further, ScriptEase has many global functions to cast data as a
specific type, functions that are not part of the ECMAScript standard. These functions are
described in the section on global functions that are specific to ScriptEase.

166 ScriptEase ISDK/C

Properties and methods of basic data
types
The basic data types, such as Number and String, have properties and methods assigned
to them that may be used with any variable of that type. For example, all String variables
may use all String methods.

The properties and methods of the basic data types are retrieved in the same way as from
objects. For the most part, they are used internally by the interpreter, but you may use
them if choose. For example, if you have a numeric variable called number and you want
to convert it to a string, you can use the .toString() method as illustrated in the following
fragment.
var n = 5
var s = n.toString()
After this fragment executes, the variable n contains the number 5 and the variable s
contains the string "5".

The following two methods are common to all variables.

.toString()
This method returns the value of a variable expressed as a string.

.valueOf()
This method returns the value of a variable.

Operators
Mathematical operators

Mathematical operators are used to make calculations using mathematical data. The
following sections illustrate the mathematical operators in ScriptEase.

Basic arithmetic
The arithmetic operators in ScriptEase are pretty standard.
= assignment assigns a value to a variable
+ addition adds two numbers
- subtraction subtracts a number from another
* multiplication multiplies two numbers
/ division divides a number by another
% modulo returns a remainder after division
The following are examples using variables and arithmetic operators.
var i;
i = 2; i is now 2

ScriptEase JavaScript Language 167

i = i + 3; i is now 5, (2+3)
i = i - 3; i is now 2, (5-3)
i = i * 5; i is now 10, (2*5)
i = i / 3; i is now 3, (10/3) (the remainder is ignored)
i = 10; i is now 10
i = i % 3; i is now 1, (10%3)
Expressions may be grouped to affect the sequence of processing. All multiplication and
division is calculated for an expression before addition and subtraction unless parentheses
are used to override the normal order. Expressions inside parentheses are processed first,
before other calculations. In the following examples, the information inside square
brackets, "[]," are summaries of calculations provided with these examples and not part of
the calculations.

Notice that:
4 * 7 - 5 * 3; [28 - 15 = 13]
has the same meaning, due to the order of precedence, as:
(4 * 7) - (5 * 3); [28 - 15 = 13]
but has a different meaning than:
4 * (7 - 5) * 3; [4 * 2 * 3 = 24]
which is still different from:
4 * (7 - (5 * 3)); [4 * -8 = -32]
The use of parentheses is recommended in all cases where there may be confusion about
how the expression is to be evaluated, even when they are not necessary.

Assignment arithmetic
Each of the above operators can be combined with the assignment operator, =, as a
shortcut for performing operations. Such assignments use the value to the right of the
assignment operator to perform an operation with the value to the left. The result of the
operation is then assigned to the value on the left.
 = assignment assigns a value to a variable
+= assign addition adds a value to a variable
-= assign subtraction subtracts a value from a variable

*= assign multiplication multiplies a variable by a
value

/= assign division divides a variable by a value
%= assign remainder returns a remainder after

division
The following lines are examples using assignment arithmetic.
var i;
i = 2; i is now 2
i += 3; i is now 5, (2+3) same as i = i + 3
i -= 3; i is now 2, (5-3) same as i = i - 3
i *= 5; i is now 10, (2*5) same as i = i * 5
i /= 3; i is now 3.333, (10/3) same as i = i / 3
i = 10; i is now 10
i %= 3; i is now 1, (10%3) same as i = i % 3

168 ScriptEase ISDK/C

Auto-increment (++) and auto-decrement (--)
To add or subtract one, 1, to or from a variable, use the auto-increment, ++, or
auto-decrement, --, operator. These operators add or subtract 1 from the value to which
they are applied. Thus, "i++" is a shortcut for "i += 1", which is a shortcut for
"i = i + 1".

These operators can be used before, as a prefix operator, or after, as a postfix operator,
their variables. If they are used before a variable, it is altered before it is used in a
statement, and if used after, the variable is altered after it is used in the statement. The
following lines demonstrates prefix and postfix operations.
i = 4; i is 4

j = ++i; j is 5, i is 5 (i was incremented before use)
j = i++; j is 5, i is 6 (i was incremented after use)
j = --i; j is 5, i is 5 (i was decremented before use)
j = i--; j is 5, i is 4 (i was decremented after use)
i++; i is 5 (i was incremented)

Bit operators
ScriptEase contains many operators for operating directly on the bits in a byte or an
integer. Bit operations require a knowledge of bits, bytes, integers, binary numbers, and
hexadecimal numbers. Not every programmer needs to or will choose to use bit
operators.

<< shift left i = i << 2;
<<= assignment shift left i <<= 2;
>> shift right i = i >> 2;
>>= assignment shift right i >>= 2;
>>> shift left with zeros i = i >>> 2
>>>= assignment shift left

with zeros
i >>>= 2

& bitwise and i = i & 1
&= assignment bitwise and i &= 1;
| bitwise or i = i | 1
|= assignment bitwise or i |= 1;
^ bitwise xor, exclusive

or
i = i ^ 1

^= assignment bitwise xor,
exclusive or

i ^= 1

~ Bitwise not, complement i = ~i;

Logical operators and conditional expressions
Logical operators compare two values and evaluate whether the resulting expression is
false or true. A variable or any other expression may be false or true. An expression that
does a comparison is called a conditional expression.

Logical operators are used to make decisions about which statements in a script will be

ScriptEase JavaScript Language 169

executed, based on how a conditional expression evaluates. As an example, suppose that
you are designing a simple guessing game. The computer thinks of a number between 1
and 100, and you guess what it is. The computer tells you if you are right or not and
whether your guess is higher or lower than the target number. This procedure uses the if
statement, which is introduced in the next section. Basically, if the conditional expression
in the parenthesis following an if statement is true, the statement block following the if
statement is executed. If false, the statement block is ignored, and the computer continues
executing the script at the next statement after the ignored block.

The script might have a structure similar to the one following, in which GetTheGuess() is
a function that gets your guess.
var guess = GetTheGuess(); //get the user input
if (guess > target_number)
{

guess is too high...
}

if (guess < target_number)
{

guess is too low...
}

if (guess == target_number)
{

you guessed the number!...
}

This example is simple, but it illustrates how logical operators can be used to make
decisions in ScriptEase.

170 ScriptEase ISDK/C

The logical operators are:
! not reverses an expression. If (a+b) is true, then

!(a+b) is false.
&& and true if, and only if, both expressions are true.

Since both expressions must be true for the
statement as a whole to be true, if the first
expression is false, there is no need to evaluate
the second expression, since the whole
expression is false.

|| or true if either expression is true. Since only one
of the expressions in the or statement needs to
be true for the expression to evaluate as true, if
the first expression evaluates as true, the
interpreter returns true and does not bother
with evaluating the second.

== equality true if the values are equal, otherwise false. Do
not confuse the equality operator, ==, with the
assignment operator, =.

!= inequality true if the values are not equal, else false.
< less than a < b is true if a is less than b.
> greater

than
a > b is true if a is greater than b.

<= less than
or equal to

a <= b is true if a is less than or equal to b.

>= greater
than or
equal to

a >= b is true if a is greater than b.

Remember, the assignment operator, =, is different than the equality operator, ==. If you
use one equal sign when you intend two, your script will not function the way you want it
to. This is a common pitfall, even among experienced programmers. The two meanings
of equal signs must be kept separate, since there are times when you have to use them
both in the same statement, and there is no way the computer can differentiate them by
context.

typeof operator
The typeof operator provides a way to determine and to test the data type of a variable
and may use either of the following notations, with or without parentheses.
var result = typeof variable
var result = typeof(variable)

ScriptEase JavaScript Language 171

After either line, the variable result is set to a string that is represents the variable's type:
"undefined", "boolean", "string", "object", "number", "function" or "buffer".

Flow decisions statements
This section describes statements that control the flow of a program. Use these statements
to make decisions and to repeatedly execute statement blocks.

if
The if statement is the most commonly used mechanism for making decisions in a
program. It allows you to test a condition and act on it. If an if statement finds the
condition you test to be true, the statement or statement block following it are executed.
The following fragment is an example of an if statement.
if (goo < 10)
{

Screen.write("goo is smaller than 10\n");
}

else
The else statement is an extension of the if statement. It allows you to tell your program
to do something else if the condition in the if statement was found to be false. In
ScriptEase code, it looks like the following.
if (goo < 10)
{

Screen.write("goo is smaller than 10\n");
}
else
{

Screen.write("goo is not smaller than 10\n");
}
To make more complex decisions, else can be combined with if to match one out of a
number of possible conditions.

172 ScriptEase ISDK/C

The following fragment illustrates using else with if.
if (goo < 10)
{

Screen.write("goo is less than 10\n");
if (goo < 0)
{

Screen.write("goo is negative; so it's less than 10\n");
}

}
else if (goo > 10)
{

Screen.write("goo is greater than 10\n");
}
else
{

Screen.write("goo is 10\n");
}

while
The while statement is used to execute a particular section of code, over and over again,
until an expression evaluates as false.
while (expression)
{

DoSomething();
}
When the interpreter comes across a while statement, it first tests to see whether the
expression is true or not. If the expression is true, the interpreter carries out the statement
or statement block following it. Then the interpreter tests the expression again. A while
loop repeats until the test expression evaluates to false, whereupon the program continues
after the code associated with the while statement.

The following fragment illustrates a while statement with a two lines of code in a
statement block.
while(ThereAreUncalledNamesOnTheList() != false)
{

var name=GetNameFromTheList();
SendEmail(name);

}

do {...} while
The do statement is different from the while statement in that the code block is executed
at least once, before the test condition is checked.
var value = 0;
do
{

value++;
ProcessData(value);

} while(value < 100);

ScriptEase JavaScript Language 173

The code used to demonstrate the while statement could also be written as the following
fragment.
do
{

var name = GetNameFromTheList();
SendEmail(name)

} while (name != TheLastNameOnTheList());
Of course, if there are no names on the list, the script will run into problems!

for
The for statement is a special looping statement. It allows for more precise control of the
number of times a section of code is executed. The for statement has the following form.
for (initialization; conditional; loop_expression)
{

statement
}
The initialization is performed first, and then the expression is evaluated. If the result is
true or if there is no conditional expression, the statement is executed. Then the
loop_expression is executed, and the expression is re-evaluated, beginning the loop again.
If the expression evaluates as false, then the statement is not executed, and the program
continues with the next line of code after the statement. For example, the following code
displays the numbers from 1 to 10.
for(var x=1; x<11; x++)
{

Screen.write(x);
}
None of the statements that appear in the parentheses following the for statement are
mandatory, so the above code demonstrating the while statement would be rewritten this
way if you preferred to use a for statement:
 for(; ThereAreUncalledNamesOnTheList() ;)
 {

 var name=GetNameFromTheList();
 SendEmail(name)

 }
Since we are not keeping track of the number of iterations in the loop, there is no need to
have an initialization or loop_expression statement. You can use an empty for statement
to create an endless loop:
for(;;)
{
//the code in this block will repeat forever,
//unless the program breaks out of the for loop somehow.
}

174 ScriptEase ISDK/C

break
Break and continue are used to control the behavior of the looping statements: for, while,
and do. The break statement terminates the innermost loop of for, while, or do statements.
The program resumes execution on the next line following the loop. The following code
fragment does nothing but illustrate the break statement.
for(;;)
{

break;
}
The break statement is also used at the close of a case statement, as shown below.

continue
The continue statement ends the current iteration of a loop and begins the next. Any
conditional expressions are reevaluated before the loop reiterates.

switch, case, and default
The switch statement makes a decision based on the value of a variable or statement. The
switch statement follows the following format:
switch(switch_variable)
{
case value1:

statement1
break;

case value2:
statement2
break;
.
.
.

default:
default_statement

}
The variable switch_variable is evaluated, and then it is compared to all of the values in
the case statements (value1, value2, . . . , default) until a match is found. The statement
or statements following the matched case are executed until the end of the switch block is
reached or until a break statement exits the switch block. If no match is found, the default
statement is executed, if there is one.

ScriptEase JavaScript Language 175

For example, suppose you had a series of account numbers, each beginning with a letter
that determines what type of account it is. You could use a switch statement to carry out
actions depending on that first letter. The same task could be accomplished with a series
of nested if statements, but they require much more typing and are harder to read.
switch (key[0])
{
case 'A':

Screen.write("A"); //handle 'A' accounts...
break;

case 'B':
Screen.write("B"); //handle 'B' accounts...
break;

case 'C':
Screen.write("C"); //handle 'C' accounts...
break;
default:
Screen.write("Invalid account number.\n");
break;

}
A common mistake is to omit a break statement to end each case. In the preceding
example, if the break statement after the Screen.write("B") statement were omitted, the
computer would print both "B" and "C", since the interpreter executes commands until a
break statement is encountered.

goto and labels
You may jump to any location within a function block by using the goto statement. The
syntax is:
goto LABEL;
where LABEL is an identifier followed by a colon (:). The following code fragment
continuously prompts for a number until a number less than 2 is entered.
beginning:
Screen.write("Enter a number less than 2:")
var x = getche(); //get a value for x
if (a >= 2)

goto beginning;
Screen.write(a);
As a rule, goto statements should be used sparingly, since they make it difficult to track
program flow.

176 ScriptEase ISDK/C

Conditional operator ? :
The conditional operator provides a shorthand method for writing else statements. It is
harder to read than conventional if statements, and so is generally used when the
expressions in the if statements are brief. The syntax is:
test_expression ? expression_if_true : expression_if_false
First, test_expression is evaluated. If test_expression is true, then expression_if_true is
evaluated, and the value of the entire expression replaced by the value of
expression_if_true. If test_expression is false, then expression_if_false is evaluated, and
the value of the entire expression is that of expression_if_false.

The following fragment illustrates the use of the conditional operator.
foo = (5 < 6) ? 100 : 200; // foo is set to 100
Screen.write("Name is " + ((null==name) ? "unknown" : name));

ScriptEase JavaScript Language 177

Functions
A function is an independent section of code that receives information from a program
and performs some action with it. Once a function has been written, you do not have to
think again about how to perform the operations in it. Just call the function, and let it
handle the work for you. You only need to know what information the function needs to
receive, that is, the parameters, and whether it returns a value to the statement that called
it.

Screen.write() is an example of a function which provides an easy way to display
formatted text. It receives a string from the function that called it and displays the string
on the screen. Screen.write is a void function, meaning it has no return value.

In JavaScript, functions are considered a data type, evaluating to whatever the function's
return value is. You can use a function anywhere you can use a variable. Any valid
variable name may be used as a function name. Like comments, using descriptive
function names helps you keep track of what is going on with your script.

Two rules set functions apart from the other variable types: instead of being declared with
the "var" keyword, functions are declared with the "function" keyword, and functions
have the function operator, "()", following their names. Data to be passed to a function is
included within these parentheses.

Several sets of built-in functions are included as part of the ScriptEase interpreter. These
functions are described in this manual. They are internal to the interpreter and may be
used at any time. In addition, ScriptEase ships with a number of external libraries or .jsh
files. External libraries must be explicitly included in your script to use the functions in
them. See the description of the #include preprocessor directive.

ScriptEase allows you to have two functions with the same name. The interpreter uses the
function nearest the end of the script, that is, the last function to load is the one to be
executed when the function name is called. By taking advantage of this behavior, you can
write functions that supersede the ones included in the interpreter or .jsh files.

Function return statement
The return statement passes a value back to the function that called it. Any code in a
function following the execution of a return statement is not executed.
function DoubleAndDivideBy5(a)
{

return (a*2)/5
}

178 ScriptEase ISDK/C

Here is an example of a script using the above function.
function main()
{

var a = DoubleAndDivideBy5(10);
var b = DoubleAndDivideBy5(20);
Screen.write(a + b);

}
This script displays12.

Passing variables to functions
JavaScript uses different methods to pass variables to functions, depending on the type of
variable being passed. Such distinctions ensure that information gets to functions in the
most complete and logical ways.

Primitive types, namely, Strings, numbers, and Booleans, are passed by value. The value
of theses variables are passed to a function. If a function changes one of these variables,
the changes will not be visible outside of the function where the change took place.

Composite types, Objects and Arrays, are passed by reference. Instead of passing the
value of the object, that is, the values of each property, a reference to the object is
passed. The reference indicates where in a computer's memory that values of an object's
properties are stored. If you make a change in a property of an object passed by reference,
that change will be reflected throughout in the calling routine.

Function properties -- arguments[]
The arguments[] property is an array of all of the arguments passed to a function. The
first variable passed to a function is referred to as arguments[0], the second as
arguments[1], and so forth.

The most useful aspect of this property is that it allows you to have functions with an
indefinite number of parameters. Here is an example of a function that takes a variable
number of arguments and returns the sum of them all.
function SumAll()
{

var total = 0;
for (var ssk = 0; ssk < SumAll.arguments.length; ssk++)
{

total += SumAll.arguments[ssk];
}
return total;

}

ScriptEase JavaScript Language 179

Function recursion
A recursive function is a function that calls itself or that calls another function that calls
the first function. Recursion is permitted in ScriptEase. Each call to a function is
independent of any other call to that function. (See the section on variable scope.) Be
aware that recursion has limits. If a function calls itself too many times, a script will run
out of memory and abort.

Do not worry if recursion is confusing, since you rarely have to use it. Just remember that
a function can call itself if it needs to. For example, the following function, factor(),
factors a number. Factoring is an ideal candidate for recursion because it is a repetitive
process where the result of one factor is then itself factored according to the same rules.
function factor(i) //recursive function to print all factors of i,
{// and return the number of factors in i

if (2 <= i)
{

for (var test = 2; test <= i; test++)
{

if (0 == (i % test))
{
 // found a factor, so print this factor then call
 // factor() recursively to find the next factor
 return(1 + factor(i/test));
}

}
}

// if this point was reached, then factor not found
return(0);
}

Error checking for functions
Some functions return a special value if they fail to do what they are supposed to do. For
example, the Clib.fopen() method opens or creates a file for a script to read from or write
to. But suppose that the computer is unable to open a file. In such a case, the Clib.fopen()
method returns null.

If you try to read from or write to a file that was not properly opened, you get all kinds of
errors. To prevent these errors, make sure that Clib.fopen() does not return null when it
tries to open a file. Instead of just calling Clib.fopen() as follows:
var fp = Clib.fopen("myfile.txt", "r");
check to make sure that null is not returned:
if (null == (var fp = Clib.fopen("myfile.txt", "r")))
{

ErrorMsg("Clib.fopen returned null");
}
You may abort a script in such a case, but at least you will know why. See the section on
the Clib object.

The main() function

180 ScriptEase ISDK/C

If a script has a function called main(), it is the first function executed. (For more
information on what takes place when a script is run, see the section on running a script.)
Other than the fact that main() is the first function executed, it is like other functions. If
the main() function returns a value, that value is returned to the operating system or
whatever process called the script.

The main() function automatically receives two parameters, which, by convention, are
called argc and argv. The parameter argc, argument count, is the number of parameters
passed to the script and the parameter argv is an array of strings, with each element being
one of the parameters. The first element, argv[0], of this array is always the name of the
script, thus if argc == 1, then no variables were passed to a script.

Arguments are passed to a script as parameters when it is called from a command line as
illustrated in the following line.
sewin32.exe jseedit.jse document.txt
In the example above, argc == 2, argv[0] == "jseedit.jse" and argv[1] == "document.txt".

The cfunction keyword
The cfunction keyword defines a function whose behavior is somewhat different than that
of standard functions. In a cfunction, variables and operators behave more as they would
in C, specifically in the ScriptEase implementation of C as a scripting language. The
cfunction is provided for the convenience of C programmers who are used to the way the
C language handles functions and variables and for those situations in which the
underlying logic of C is more efficient for a particular procedure.

You can change the contents of strings or parts of them by assigning a new character
value to a element of a character array. For example:
var string = "file"
string[0] = 'm'
This fragment creates a string containing the word "mile".

Array arithmetic
If you try to add a number to a string, instead of converting the number to a string and
concatenating the two, the starting point of the string will be shifted forward by the
number of characters in number.

For example, the statement:
"This is a test" + 3
evaluates to "This is a test3", in a standard JavaScript. In a cfunction, however, this
statement evaluates to "s is a test". The starting point of the string has been shifted by
three, so that string[0] is now 's' instead of 'T'. The 'T', 'h', and 'i' of the original string are
at indices [-3], [-2], and [-1], respectively.

Variables are passed to cfunctions by reference. In other words, if you have two
variables:
var George = "one"
var Martha = "one"

ScriptEase JavaScript Language 181

and you compare them with the "==" operator, the comparison evaluates to false and not
to true, as you might expect. The reason is that while George and Martha have the same
value, they are not the same variable since they point to different memory locations, and
therefore are not equal to each other. In functions declared with the function keyword,
string variables are compared by value, so the actual values of George and Martha are
compared. In such cases the result of comparing identical strings with "==" comparison is
true.

Arrays
An array is a special class of object that refers to its properties with numbers rather than
with variable names. Properties of an array object are called elements of the array. The
number used to identify an element is called an index and follows an array name in
brackets. Array indices must be either numbers or strings.

Array elements can be of any data type. The elements in an array do not all need to be of
the same type, and there is no limit to the number of elements an array may have.

The following statements demonstrate assigning values to arrays.
var array = new Array;
array[0] = "fish";
array[1] = "fowl";
array["joe"] = new Rectangle(3,4);
array[fool = Acreeping things@
array[goo + 1] = Aetc.@
The variables foo and goo must be either numbers or strings.

Since arrays use a number to identify the data they contain, they provide an easy way to
work with sequential data. For example, suppose you wanted to keep track of how many
jelly beans you ate each day, so you can graph your jelly bean consumption at the end of
the month.

Arrays provide an ideal solution for storing such data.
var April = new Array;
April[1] = 233;
April[2] = 344;
April[3] = 155;
April[4] = 32;
Now you have all your data stored conveniently in one variable. You can find out how
many jelly beans you ate on day x by checking the value of April[x]:
for(var x = 1; x < 32; x++)

Screen.write("On April " + x + " I ate " + April[x] +
" jellybeans.\n");

Arrays usually start at index [0], not index [1]. Note that arrays do not have to be
continuous, that is, you can have an array with elements at indices 0 and 2 but none at 1.

182 ScriptEase ISDK/C

Creating arrays
Like other objects, arrays are created using the "new" operator and the Array constructor
function. There are three possible ways to use this function to create an array. The
simplest is to call the function with no parameters:
var a = new Array();
This line initializes variable a as an array with no elements. The parentheses are optional
when creating a new array, if there are no arguments. If you wish to create an array of a
predefined size, pass variable a the size as a parameter of the Array() function. The
following line creates an array with a length of the size passed.
var b = new Array(31);
In this case, an array with length 31 is created.

Finally, you can pass a number of elements to the Array() function which creates an array
containing all of the parameters passed. For example:
var c = new Array(5, 4, 3, 2, 1, "blast off");
creates an array with a length of 6. c[0] is set to 5, c[1] is set to 4, and so on up to c[5],
which is set to the string "blast off". Note that the first element of the array is c[0], not
c[1].

Arrays may also be created dynamically. By referring to a variable with an index in
brackets, a variable is created as or converted to an array. Arrays created in this manner
are unable to use the methods and properties described below, so it is recommended that
you use the Array() constructor function to create arrays.

Methods and properties of arrays
When an array is created with the Array() constructor function, a number of methods and
properties become available to it.

Properties of arrays
.length
The .length property returns one more than the largest index of the array. Note that this
value does not necessarily represent the actual number of elements in an array, since
elements do not have to be contiguous.

For example, suppose we had two arrays "ant" and "bee", with the following elements:
var ant = new Array; var bee = new Array;
ant[0] = 3 bee[0] = 88
ant[1] = 4 bee[3] = 99
ant[2] = 5
ant[3] = 6
The .length property of both ant and bee is equal to 4, even though ant has twice as many
actual elements as bee does.

By changing the value of the length property, you can remove array elements. For
example, if you change ant.length to 2, ant will only have the first two members, and the

ScriptEase JavaScript Language 183

values stored at the other indices will be lost. If we set bee.length to 2, then bee will
consist of two members: bee[0], with a value of 88, and bee[1], with an undefined value.

Methods of arrays
.join()
The .join() method creates a string of all of array elements. The method has an
optional parameter, a string which represents the character or characters that will separate
the array elements. By default, the array elements will be separated by a comma. For
example:
var a = new Array(3, 5, 6, 3);
var string = a.join();
will set the value of "string" to "3,5,6,3". You can use another string to separate the array
elements by passing it as an optional parameter to the .join() method. For example,
var a = new Array(3, 5, 6, 3);
var string = a.join("*/*");
creates the string "3*/*5*/*6*/*3".

.sort([compareFunction])
The .sort() method sorts members of an array and puts them in alphabetic order. If no
compare function is supplied, then elements are converted to strings to do the conversion,
which may cause some confusion. For example, the following code:
var a = new Array(32, 5, 6, 3)
a.sort();
var string = a.join();
creates a string "3, 32, 5, 6".

This behavior is often not what you want in a sort function. Fortunately, the .sort()
method allows you to specify a different way to sort the array elements. The name of the
function you want use to compare values is passed as the only parameter to sort().

If a compare function is supplied, the array elements are sorted according to the return
value of the compare function. If a and b are two elements being compared, then:
• If compareFunction(a, b) is less than zero, sort b to a lower index than a.
• If compareFunction(a, b) returns zero, leave a and b unchanged to each other.
C If compareFunction(a, b) is greater than zero, sort b to a higher index than a.
By specifying the following function as a sort function, you will get the desired result
when comparing numbers:
function compareNumbers(a, b)
{

return a - b
}
.reverse()
The reverse() method switches the order of the elements of an array, so that the last
element becomes the first.

184 ScriptEase ISDK/C

The following code:
ar array = new Array;
array[0] = "ant";
array[1] = "bee";
array[2] = "wasp";
array.reverse();
produces the following array:
array[0] == "wasp"
array[1] == "bee"
array[2] == "ant"

Objects
Variables and functions may be grouped together in one variable and referenced as a
group. A compound variable of this sort is called an object in which each individual item
of the object is called a property. In general, it is adequate to think of object properties,
which are variables or constants, and of object methods, which are functions.

To refer to a property of an object, use both the name of the object and of the property,
separated by the operator ".", a period. Any valid variable name may be used as a
property name. For example, the code fragment below assigns values to the width and
height properties of a rectangle object and calculates the area of a rectangle and displays
the result:
var Rectangle;

Rectangle.height = 4;
Rectangle.width = 6;

Screen.write(Rectangle.height * Rectangle.width);
The main advantage of objects occurs with data that naturally occurs in groups. An object
forms a template that can be used to work with data groups in a consistent way. Instead of
having a single object called Rectangle, you can have a number of Rectangle objects,
each with their own values for width and height.

Predefining objects with constructor functions
A constructor function creates an object template. For example, a constructor function to
create Rectangle objects might be defined like the following.
function Rectangle(width, height)
{

this.width = width;
this.height = height;

}

ScriptEase JavaScript Language 185

The keyword "this" is used to refer to the parameters passed to the constructor function
and can be conceptually thought of as "this object." To create a Rectangle object, call the
constructor function with the "new" operator:
var joe = new Rectangle(3,4)
var sally = new Rectangle(5,3);
This code fragment creates two rectangle objects: one named joe, with a width of 3 and a
height of 4, and another named sally, with a width of 5 and a height of 3.

Constructor functions create objects belonging to the same class. Every object created by
a constructor function is called an instance of that class. The examples above create a
Rectangle class and two instances of it. All of the instances of a class share the same
properties, although a particular instance of the class may have additional properties
unique to it. For example, if we add the following line:
joe.motto = "ad astra per aspera";
we add a motto property to the Rectangle joe. But the rectangle sally has no motto
property.

Methods - assigning functions to objects
Objects may contain functions as well as variables. A function assigned to an object is
called a method of that object.

Like a constructor function, a method refers to its variables with the "this" operator. The
following fragment is an example of a method that computes the area of a rectangle.
function rectangle_area()
{

return this.width * this.height;
}
Because there are no parameters passed to it, this function is meaningless unless it is
called from an object. It needs to have an object to provide values for this.width and
this.height.

A method is assigned to an object as the following lines illustrates.
joe.area = rectangle_area;
The function will now use the values for height and width that were defined when we
created the rectangle object joe.

Methods may also be assigned in a constructor function, again using the this keyword.

186 ScriptEase ISDK/C

For example, the following code:
function rectangle_area()
{

return this.width * this.height;
}

function Rectangle(width, height)
{

this.width = width;
this.height = height;
this.area = rectangle_area;

}
creates an object class Rectangle with the rectangle_area method included as one of its
properties. The method is available to any instance of the class:
var joe = new Rectangle(3,4);
var sally = new Rectangle(5,3);

var area1 = joe.area();
var area2 = sally.area();
This code sets the value of area1 to 12, and the values of area2 to 15.

Object prototypes
An object prototype lets you specify a set of default values for an object. When an object
property that has not been assigned a value is accessed, the prototype is consulted. If such
a property exists in the prototype, its value is used for the object property.

Object prototypes are useful for two reasons: they ensure that all instances of an object
use the same default values, and they conserve the amount of memory needed to run a
script. When the two Rectangles, joe and sally, were created in the previous section, they
were each assigned an area method. Memory was allocated for this function twice, even
though the method is exactly the same in each instance. This redundant memory waste
can be avoided by putting the shared function or property in an object's prototype. Then
all instances of the object will use the same function instead of each using its own copy.

The following fragment shows how to create a Rectangle object with an area method in a
prototype.
function rectangle_area()
{

return this.width * this.height;
}

function Rectangle(width, height)
{

this.width = width;
this.height = height;

}

ScriptEase JavaScript Language 187

Rectangle.prototype.area = rectangle_area;
The rectangle_area method can now be accessed as a method of any Rectangle object as
shown in the following.
var area1 = joe.area();
var area2 = sally.area();
You can add methods and data to an object prototype at any time. The object class must
be defined, but you do not have to create an instance of the object before assigning it
prototype values. If you assign a method or data to an object prototype, all instances of
that object are updated to include the prototype.

If you try to write to a property that was assigned through a prototype, a new variable will
be created for the newly assigned value. This value will be used for the value of this
instance of the object's property. All other instances of the object will still refer to the
prototype for their values. If, for the sake of this example, we assume that joe is a special
Rectangle, whose area is equal to three times its width plus half its height, we can modify
joe as follows.
function joe_area()
{

return (this.width * 3) + (this.height/2);
}
joe.area = joe_area;
This fragment creates a value, which in this case is a function, for joe.area that
supercedes the prototype value. The property sally.area is still the default value defined
by the prototype. The instance joe uses the new definition for its area method.

for . . . in
The for . . . in statement is a way to loop through all of the properties of an object, even if
the names of the properties are unknown. The statement has the following form.
for (property in object)
{

DoSomething(object[property]);
}
where object is the name of an object previously defined in a script. When using the
for . . . in statement in this way, the statement block will execute once for every property
of the object. For each iteration of the loop, the variable property contains the name of
one of the properties of object and may be accessed with "object[property]". Note that
properties that have been marked with the DONT_ENUM attribute are not accessible to a
for . . . in statement.

with
The with statement is used to save time when working with objects. It lets you assign a
default object to a statement block, so you need not put the object name in front of its
properties and methods. The object is automatically supplied by the interpreter.

188 ScriptEase ISDK/C

The following fragment illustrates using the Clib object.
with (Clib)
{

printf("I am a camera");
srand();
xxx = rand() % 5;
putchar(xxx);

}
The Clib methods: Clib.printf(), Clib.srand(), Clib.rand(), and Clib.putchar(), in the
sample above are called as if they had been written with Clib prefixed. All code in the
block following a with statement seems to be treated as if the methods associated with the
object named by the with statement were global functions. Global functions are still
treated normally, that is, you do not need to prefix "global." to them unless you are
distinguishing between two like-named functions common to both objects.

If you were to jump, from within a with statement, to another part of a script, the with
statement would no longer apply. In other words, the with statement only applies to the
code within its own block, regardless of how the interpreter accesses or leaves the block.

You may not use a goto statement or label to jump into or out of the middle of a with
statement block.

Dynamic objects
ScriptEase allows for direct access to the interior workings of how object properties are
called. If you wish, you may specify how an object accesses its data by replacing one of
the following routines which are internal to ScriptEase. The following methods are
available for modifying how an object calls its members. In all cases, the parameter,
property, is the name of the property being called.

._get(property, ExpectCall)
Whenever the value of a property is accessed, the ._get() method is called. By defining a
new ._get() method for an object, you modify the way it accesses property values.

The 4.20 _get function now receives a second parameter. This parameter is called
"ExpectCall" and is true if the parameter is being retrieved to make a function call, and
false for other situations.
For example, in this case:

 obj.foo;

The second parameter will be false. But in this case

 obj.foo();

ScriptEase JavaScript Language 189

the second parameter will be true.

The example following modifies the Rectangle object created earlier with a new ._get()
method. Whenever you access the value of one of the object's properties, it will inform
you if the Rectangle is a square. After the object is initialized, the main() function creates
an instance of the object with the width and height properties both set to 3. When the
value of the Rectangle.area() method is retrieved, used in a Clib.printf() statement, the
dynamic ._get() function is called, which displays, "The rectangle is a square," since
width and height are equal.

function rectangle_area()
{
 return this.width * this.height;
}

function rectangle_get(property)
{
 if (this.width == this.height)
 Clib.printf("The rectangle is a square.");
 return this [property];
}

function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
 this._get = rectangle_get;
}

Rectangle.prototype.area = rectangle_area;

main()
{
 var rect = new Rectangle(3, 3);
 Clib.printf("The area of the rectangle is %d.",
 rect.area());
 Clib.getch();
}

._put(property, value)
This method controls the way that new data is assigned to a property.

._canPut(property)
This method returns a boolean value indicating whether the property can be written to or
not, that is, whether it is read-only or not. For example, you could modify this property to
notify users when they try to change read-only values.

._hasProperty(property)

190 ScriptEase ISDK/C

This method returns a boolean value indicating whether or not a property exists.

._delete(property)
This method is called whenever a property is deleted with the delete operator. The
property will be "_delete" when the object itself is being deleted.

._defaultValue(hint)
This method returns the primitive value of a variable.

The parameter hint should be either a string or a number that indicates the preferred data
type to return. If hint is a string, the method will return a string if possible, otherwise a
different type. The actual value of hint is ignored.

._construct(. . .)
This method is called whenever a new object is created with the new operator. The object
will have been already created and passed as the this variable to the .construct() method.

._call(. . .)
The call function is called whenever an object method is called. Whatever parameters are
passed to the original function will be passed to the call() function.

The following example creates an Annoying object that beeps whenever it retrieves the
value of a property.
function myget(prop)
{

System.beep();
return this[property];

}

var Annoying = new Object;

Annoying.get = myget;

Note that the System.beep() method is used only for this example and must be explicitly
created for actual use.

._operator(op,operand)
Operator Overloading
ScriptEase allows you to overload the standard arithmetic operators when used with your
objects. Consider this example:

 var a = obj + 10;

If 'obj' is one of your own objects, you may have some special meaning you'd like the
addition operator to have when applied to it. Operator overloading allows this to be done.

ScriptEase JavaScript Language 191

Whenever an object is the first operand to an arithmetic operation, it has the opportunity
to redefine what that operation means.
All of the arithmetic operators can be overloaded, such as +, -, /, >>, and so forth.
In addition, the unary operators (i.e. those that have only one operand, the object) can
also be overloaded. These are the operators ~, !, ++, --, + , and -.
Finally, the assignment operator (=) can also be overloaded.

Please note that the compound assignment operators (i.e., *=, +=, etc) are treated exactly
like you wrote out the statement. In other words,

 a += b;

is treated just like:

 a = a + b;

Overloading the operators will work that way. In this case, if 'a' is an object with
overloaded operators, that statement will involve two operators, a '+' and an '='.

To overload operators on a particular object, you simply give the object the method
'_operator'. This works like all of the other dynamic object methods. For instance, you
can put the '_operator' method in a prototype so that all objects of that class inherit the
operator overloading. Here is an example:

 function overload(op,operand)
 {
 Clib.printf("overloading occurring on operator
 '%s'\n",op);
 return DYN_DEFAULT;
 }

 var myObject = new Object();
 myObject._operator = overload;

 myObject = 10;

The operator overloading function is passed two parameters. The first parameter is the
operator itself, in the form of a string. It will be "+" or "-" or "++", etc. The second
parameter is the second operand to the operator.
If the object operation being overloaded is 'obj + 4', for instance, then the first parameter
is "+" and the second parameter is the number 4. The unary operators (such as '-obj') do
not have a second operand, so the second parameter is undefined. You can use this to

192 ScriptEase ISDK/C

distinguish the operators + and - which can be used either way, i.e. the difference
between 'obj + 4' and '+obj'.

Whatever value the operator function returns is taken to be the value of the expression. If
the operator function returns DYN_DEFAULT or
OPERATOR_DEFAULT_BEHAVIOR, then the normal operation is done.
In many cases, you will not want to override all of the operators that could be applied to
your object, so you will return this value if the operator is not one you are interested in. In
the example above, we print out a message when the object is used in an operation, but
we don't change what the operation does. We always return DYN_DEFAULT and thus
do the normal ECMAScript operation.

The global object and its properties
Global variables are members of the global object. To access global properties, you do
not need to use an object name. For example, to access the isNaN() method, which tests
to see whether a value is equal to the special value NaN you can call either of the
following.
isNaN(value);
or
global.isNaN(value);
The exception to this rule occurs when you are in a function that has a local variable with
the same name as a global variable. In such a case, you must use the global keyword to
reference the global variable.

Properties of the global object
._argc
This property refers to the number of parameters passed to the main() function of a script.
The name of the script is always the first parameter, so if ._argc == 1, then the script
received no arguments. See the main() function for more information on argc and the
main() function.

._argv
This property is an array of strings. Each string is a parameter passed to the script's
main() function. The value of argv[0] is always the name of the script being called. The
first parameter passed to the script is in argv[1]. See the main() function for more
information on argc, argv, and the main() function.

Methods of the global object
.eval(expression)

ScriptEase JavaScript Language 193

This method evaluates whatever is represented by the parameter expression. If expression
is not a string, it will be returned. For example, calling eval(5) returns the value 5.

If expression is a string, the interpreter tries to interpret the string as if it were JavaScript
code. If successful, the method returns the last variable with which was working, for
example, the return variable. If the method is not successful, it returns the special value,
undefined.

.parseInt(string [, radix])
This method converts an alphanumeric string to an integer number. The first parameter,
string, is the string to be converted, and the second parameter, radix, is an optional
number indicating which base to use for the number. If the radix parameter is not
supplied, the method defaults to base 10 which is decimal. If the first digit of string is a
zero, radix defaults to base 8 which is octal. If the first digit is zero followed by an "x",
that is, "0x", radix defaults to base 16 which is hexadecimal.

Whitespace characters at the beginning of the string are ignored. The first non-whitespace
character must be either a digit or a minus sign (-). All numeric characters following the
string will be read, up to the first non-numeric character, and the result will be converted
into a number, expressed in the base specified by the radix variable. All characters
including and following the first non-numeric character are ignored. If the string is unable
to be converted to a number, the special value NaN will be returned.

.parseFloat(string)
This method is similar to parseInt() except that it reads decimal numbers with fractional
parts. In other words, the first period, ".", in the parameter string is considered to be a
decimal point, and any following digits are the fractional part of the number. The method
.parseFloat() does not take a second parameter.

.escape(string)
The .escape() method receives a string and escapes the special characters so that the
string may be used with a URL. All uppercase and lowercase letters, numbers, and the
special symbols, @ * + - . /, remain in the string. All other characters are replaced by
their respective Unicode sequence.

.unescape(string)
This method is the reverse of the .escape() method and removes escape sequences from a
string and replaces them with the relevant characters.

.isNaN(number)
This method returns true if the parameter, number, evaluates to NaN, Not a Number.
Otherwise it returns false.

.isFinite(number)
This method returns true if the parameter, number, is or can be converted to a number. If
the parameter evaluates as NaN, Number.POSITIVE_INFINITY, or
Number.NEGATIVE_INFINITY, the method returns false.

194 ScriptEase ISDK/C

Exception Handling via Scripts
First for script code, exceptions are trapped with try:

try
{
 do something;
}
catch(e)
{
 Clib.printf("Something bad happened:
%s\n",e.toString();
}

A catch clause 'eats' the error, so the rest of the script continues. If you 'throw' something,
that something is passed up the chain as an error. You can throw the error object you
caught in a catch statement to make the error be 'unhandled'.

For instance:
try
{
 do something;
}
catch(e)
{
 Clib.printf("Something bad happened:
%s\n",e.toString();
 throw e;
}

In this case, if there is an error, it will be printed out, but then the program will still stop
with that error.

You can raise arbitrary errors as you like in a program, i.e.:
throw new TypeError("You are not my type!");

A try block can also have a finally clause, e.g.:
try
{
 do something;
}
finally
{
 Clib.printf("Always happens.\n");
}

ScriptEase JavaScript Language 195

The finally clause ALWAYS is executed right before the block is left, even if left by a
goto, return, error, or whatever. If the finally block does a control transfer (i.e. it does a
goto, throw, or return), that takes precedence, else whatever transfer was pending actually
does happen.

So if you do:
try
{
 return 10;
}
finally
{
 Clib.printf("BYE!\n");
}

This will print BYE! then return 10 from the function. If you do:
try
{
 return 10;
}
finally
{
 goto no_way;
}

no_way: ...

In this case, the goto takes precedence over the return, so the return is ignored and
execution continue with the '...' code.

Preprocessing
This section describes directives that affect the processing of a ScriptEase script prior to
finally compiling, tokenizing, and executing the script.

Preprocessor Directives
The following ScriptEase statements that begin with a # character are collectively called
preprocessor directives, since they are processed before a script is actually executed and
direct the way the script commands are interpreted. Preprocessor directives can only be
used with the ScriptEase interpreter. Other JavaScript interpreters will not recognize
them.

#define
The #define directive is used to replace a token or almost any identifier with other
characters. The #define directive is executed while the script is being read into the

196 ScriptEase ISDK/C

interpreter, before the script itself is executed. The #define directive causes one string to
be replaced by another in the script that goes to the interpreter. All substitutions are made
before the code is interpreted. A #define directive has the following structure.
#define token replacement
This line results in all subsequent occurrences of "token" being replaced by
"replacement". Consider the following line.
#define NumberOfCountriesInSouthAmerica 13
The define statement increases program legibility and makes it easier to change code
later. If Bolivia and Peru decide someday to unite, you only have to change the #define
statement to update your program. Otherwise, you would have to go through your script
looking for all occurrences of the number 13, decide when they refer to the number of
countries in South America, and change them to the number 12.

Likewise, if you write screen routines for a 25-line monitor, and then later decide to make
it a 50-line monitor, you're better off altering the following #define directive from:
#define ROW_COUNT 25
to
#define ROW_COUNT 50
and using ROW_COUNT in your code. You only have to make one change in your script
instead of many.

#include
The #include directive lets you include other scripts, and all of the functions contained
therein, as a part of the code you are writing. Usually #include lines are placed at the
beginning of the script and consist only of the #include statement and the name of the file
to be included, as in the following.
#include <gdi.jsh>
#include "gdi.jsh"
#include 'gdi.jsh'
Any one of these lines make all of the functions in the library file gdi.jsh available to the
script that has the line. The quote characters, ' or ", may be used in place of the angled
brackets < and >.

To include several files in one program simply use multiple #include directives as shown.
#include <screen.jsh>
#include <keyboard.jsh>
#include <init.jsh>
#include <comm.jsh>
The ScriptEase interpreter will not include a file more than once, so if a file has already
been included, a second or subsequent #include directive has no effect. ScriptEase ships
with a large number of libraries of pre-written functions that you can use. Library files
are plain text files, as are all ScriptEase scripts, and have the extension .jsh as a default.

Since these libraries are external to ScriptEase, they are less static than the standard
function libraries, and can be easily expanded or modified as the need arises. The most

ScriptEase JavaScript Language 197

recent versions of .jsh libraries are listed on the Nombas downloads page at the following
web site:

www.nombas.com

#if, #ifdef, #elif, #else, #endif
These directives are all preprocessor conditionals and allow you to specify a different set
of script source based on different conditions at run time. Conditional directives are
frequently used in scripts designed to run on different operating systems by ensuring that
scripts include files that are appropriate for the operating system being used.

#if is used like an if statement. #else corresponds to an else statement. #elif corresponds
to an else if statement. These directives define which block of code will actually be used
when a script is interpreted and executed. You must use them with terminating #endif
directives to mark the ends of code blocks.
var fullPathOfFile = Clib.rsprintf("%s\\%s\\%s\\%s",
For example, suppose you have a script that builds long path names from directories
supplied to it in different variables. If you are working in a DOS-based environment, the
backslash character is used to separate directories, so you could indicate the full path of a
file in DOS as follows:
 rootdirectory, subdirectory1,
 subdirectory2, filename);
If you ported this script to a UNIX machine, however, you would run into problems since
UNIX uses forward slashes to separate directories.

You can get around this problem by defining the separator character differently for each
operating system:
#if defined(_UNIX_)

#define PathChar '/'
#elif defined(_MAC_)

#define PathChar ':'
#else

#define PathChar '\\'
#endif
By putting the separator character in a variable, you can make the script work on any
operating system:
var fullPathOfFile = Clib.rsprintf("%s%c%s%c%s%c%s",
rootdirectory,

PathChar, subdirectory1,
PathChar, subdirectory2,
PathChar, filename);

The #ifdef directive is another limited form of #if that is equivalent to "#if!defined(var)".

198 ScriptEase ISDK/C

#link
The #link command incorporates pre-compiled libraries, such as dynamic link library
(.dll) files, into the ScriptEase interpreter. The #link directive is similar to the #include
statement with no parameters. For example, the directive
#link "sesock"
lets the interpreter use the functions for TCI/IP socket communication. #link takes no
parameters other than the name of the library being linked.

Although you could write these functions in JavaScript, the functions in the #link
libraries are processor intensive and run much more quickly from a compiled source.

Nombas supplies many #link libraries, such as:

GD for generating .gif files and other graphics functions

ODBC for working with ODBC databases

OLEAUTOC for doing OLE automation

REGEXPSN to perform complex searches

SESOCK for working with sockets

Contact Nombas for more information on the #link developer's kit, which lets users to
create customized #link libraries. The most recent versions of #link libraries are listed on
the Nombas downloads page on our web site:

www.nombas.com

Integrating Language Objects & Libraries 199

Integrating Language Objects
& Libraries

Description and location of the libraries
Nombas provides a suite of libraries for use within your application. These libraries
provide a set of useful functions which can be integrated with the ISDK. Each library is a
group of functions that perform similar tasks or are otherwise related in some way.

There are three main libraries: the C compatibility library, the ScriptEase library, and the
Operating System specific libraries. The source for each library can be found in the
SRCLIB directory, which contains a group of directories, each representing a specific
library. Below is a layout of the SRCLIB directory and a description of each of the
libraries found within SRCLIB\ .

 LANG The language extension library. This contains common global functions
such as define() and getArrayLength() which serve as general extensions
to the JavaScript language.

ECMA ECMA compatibility library. This is perhaps the most important library,
as it provides the set of objects required by the ECMAScript specification.
This includes the String object, Math object, Date object, and all other
objects and methods required by the ECMA specification.

CLIB A C-compatibility library. This library contains the complete set of C
library functions in a ScriptEase form for use within scripts. They are all
grouped under the 'Clib' object, so there are functions such as
Clib.strcmp() and Clib.fopen(). Currently this is the only way to perform
file I/O from scripts.

SELIB A group of Nombas supplied functions which provide useful interfaces for
some common tasks. They are grouped under the 'SElib' object. Some
functions include SElib.directory() and SElib.dynamicLink().

TEST A small suite of functions for testing scripts and the language. Grouped
under the 'Test' object.

GD A GIF manipulation library based on the freely available 'gd' package.
Most often used as a link library.

200 ScriptEase ISDK/C

MD5 An MD5 library, used for managing checksums. Most often used as link
library.

REGEX
P

A regular expression library based on the corresponding GNU library.
Most often used as a link library.

UUCOD
E

A library of UU Encoding and Decoding functions. Most often used as a
link library.

SESOC
K

A socket library for Internet communications. Most often used as a link
library.

DSP Nombas' Distributed Scripted Protocol for communicating between
scripts. Most often used as a link library.

IDSP The internet-enabled version of the DSP library. Most often used as a link
library.

WIN Useful Windows 3.1/95/NT functions. Grouped under SElib object.

OS2 Useful OS2 functions. Grouped under SElib object.

UNIX Useful Unix functions. Grouped under the SElib object.

DOS Useful DOS & Win16 functions. Grouped under the SElib object.

MAC Useful Macintosh functions. Grouped under the SElib object.

NLM Useful Netware functions.

Five Steps to using the libraries within your application

1: Add the necessary files to your project

2: Include the necessary files in your jseopt.h file

3: Define values to include the appropriate functions

4: Load the libraries within your application

5: Add any application services to the context that the libraries may use

Integrating Language Objects & Libraries 201

Step 1: Add the necessary files to your project
Each library requires all of the files within the libraries directory; for example, to include
the ECMA libraries you must add the files from the SRCLIB\ECMA directory. You
must also add all of the files in the SRCLIB\COMMON directory. All code within these
libraries is conditionally compiled into the application based on the choices you will
make in step 3. At this point no code has been added to your application.

Step 2: Include the necessary files in your jseopt.h file
Each library has a corresponding header file that is required by the library source files.
This header has the name se##libname## (e.g., seecma.h), except for the 'SElib' library,
whose header file is simply 'selib.h'. Note that if you simply include the 'seall.h' header
file, then this entire process is taken care of for you based on the define values you
choose in step 3.

Step 3: Define values to include the appropriate
functions

To include the functions in the source files, you must define certain values to enable these
functions. These defines have the format:
 JSE_##LIBNAME##_##FUNCNAME##
Some examples are JSE_SELIB_DYNAMICLINK, JSE_ECMA_PARSEFLOAT, and
JSE_CLIB_PUTS. These functions must be defined as either 1 or 0. A value of 1
enables the function, and a value of 0 disables the function. Disabling a function comes
in useful because there is a form of these defines which by default includes all the
functions in the appropriate library. These can then be turned off by defining specific
functions to be 0. To include all of the functions within a library, simply define
JSE_##LIBNAME##_ALL.

For example, if you wanted to include all of the objects and functions from the ECMA
library except for the Date and Buffer objects, and none of the functions from the Clib
library except for the Clib.printf() function, you could define these in your jseopt.h file:
#define JSE_ECMA_ALL /* All of the ECMA library */
#define JSE_ECMA_DATE 0 /* But not Date object */
#define JSE_ECMA_BUFFER 0 /* And not Buffer object */
#define JSE_CLIB_PRINTF 1 /* Also include Clib.printf() */

After you have made all of the appropriate defines, and included the files in the incjse
directory, you must then include the file 'selibdef.h', found in the srcmisc directory. This
is an automatically generated header file which will convert your set of defines, including
_ALL specifications and disabled functions, into a simple form for use by the libraries.
Once this file has been included, a function is either defined or not defined. One can
simply check for existence, like #if defined(JSE_SELIB_DYNAMICLINK). Also note
that if you include the "seall.h" header file, then selibdef.h is automatically included.

202 ScriptEase ISDK/C

Step 4: Load the libraries within your application
This is the step that adds the functions to your executing context. Once you have
initialized a context with jseInitializeExternalLink (or if in a jseAppLinkFunc with a new
context), then you should initialize all of the appropriate files. All of the Load functions
have the same form:
 jsebool LoadLibrary_##LibName##(jseContext jseContext);
For example, there is the LoadLibrary Lang() function and the LoadLibrary_SElib()
function. These functions return a boolean value indicating whether the library was
successfully loaded into the context. Once these functions are called, any functions that
you have defined through the step above will now be available in the context passed to
the functions. There is an alternative function, LoadLibrary_All() which has the same
form as the other functions, and will load every library that you have defined any
functions in using the rules described above in step 3.

Step 5: Add any application services to the context
that the libraries may use

The language libraries have been designed to be completely separate from the
application, so that any library may be compiled as a late-binding link library which still
has access to the services of the application it is linked to. To accomplish this you must
add 'Application Services' which perform application-specific tasks that are needed by the
application. There are reasonable defaults within the application, but if you want any
special behavior you should add new services. Even if you are compiling the libraries as
an internal library, you still must provide these services. Nombas provides a default
implementation of these services, which are found in the 'srcapp' directory.

A good example of these services is the Console I/O service. Any library function that
needs to read from or write to the system console will do so via the Console I/O service
that your application provides. For example, the Clib file I/O calls that read or write from
stdin, stdout, or stderr will not go to the underlying library file functions, because that
may not be appropriate for your application. Instead, you provide an application service
which has a set of functions which get called by the library.

Integrating Language Objects & Libraries 203

List of Application Services
Here is a list of the different application services available and which libraries use them:

ConsoleIO Provides Console I/O. A structure with several predefined fields
for reading and writing to the console. Used by the Clib and
Screen libraries. The default implementation simply uses the C
library calls, which should work on all non-Windowing
environments, but if you have special needs then look in
srcapp\secon.c for a sample Console I/O package. If you are
including this file, then use the AddStandardServiceConsoleIO()
function call when setting up the interpreting context.

Interpret Provides a filter function when doing SElib.interpret() or
SElib.interpretInNewThread(). The main purpose of this is to do
menial tasks such as changing the title of windows if you are in a
Windowing environment. By default, nothing special is done
before the interpret. A default implementation is found in
srcapp\seinterp.c. To include this version call the function
AddStandardServiceInterpret() when initializing the context.

Suspend Provides a suspend function for use with SElib.suspend(). Each
OS has a different method of performing suspends, and this
Application service gives a method of doing this. The default
action is to remain in a while() loop for the specified time, which
means that the system is essentially frozen during a suspend.
There is a default version in srcapp\sesuspen.c which performs the
appropriate actions for each OS. If you are including this file, then
call the function AddStandardServiceSuspend() when initializing
the interpreting context.

Spawn Provides a spawn function for use with SElib.spawn(). This is a
complicated function for Operating Systems which don't support
the standard spawn() function. Therefore it is provided as an
Application service. The default action is to do nothing and have
the function fail. SElib.spawn() will not function without this
application service. An implementation is provided in
srcapp\sespawn.c as a starting point for your application. If you
include this file, then call the function
AddStandardService_Spawn() to add the Application service.

204 ScriptEase ISDK/C

Environment Provides a mechanism for interacting with the system
environment. Because the C library environment calls are
non-portable, and different systems represent the environment in
different ways, this service gets called by the Clib.putenv() and
Clib.getenv() functions. An implementation is provided in
srcapp\seenv.c. By default, no action is taken, effectively
rendering the environment useless. If you are including the
provided file, then call the function
AddStandardService_Environment() to add the Environment
service.

Errno Simple value for sharing errno between application and library.
Because libraries can optionally be compiled as a DLL, this is the
only way to maintain a common errno value between them. By
default, errno is simply returned, but this may not be the same
errno value as used by the application. Generally, the use of errno
is limited to begin with, so it should be used only if necessary. No
file needs to be included, you must simply call
AddStandardService_Errno() when initializing the context.

MacCWD Provides a context-specific current directory. For use on
Macintosh systems with the Clib.chdir calls, and when searching in
the current directory. Because there is only one global working
directory, when there are multiple threads then they can change
each other's working directory. This service allows you to have one
working directory associated with a context. By default the cwd()
command is called, but if you are doing multithreading, or you
want your application to have its own working directory, then use
this service. An implementation is found in srcapp\semaccwd.c. If
you are including this file, call AddStandardService_MacCWD()
to add this service.

RedirectionInfo Provides a mechanism for keeping track of re-opened files. Only
needed if using Clib.freopen(). By default, the C library freopen()
is called, but when these files are closed then it is ambiguous what
happens when you write to the old file. Also, this service allows
the library to tell if a file has been reopened, so that Console I/O
functions will not be called on stdout or stderr if those files have
been reopened. The appropriate implementation is found in
srcapp\filelist.c. If you are including this file, then call
AddStandardService_FileRedirection() to add the structure to the
context.

Integrating Language Objects & Libraries 205

Example
The following examples demonstrates using these Nombas libraries in an application.
Let's say that you wish to include the following functions:
• All of the Test library
• All of the Clib library except for freopen(), getenv(), and putenv().
• All of the Lang library
• SElib.interpret() and SElib.dynamicLink()

First we include ALL of the files in the following directories under srclib: COMMON,
TEST, CLIB, LANG, and SELIB. We now have the files added to our project, so we
must include the necessary header files. For this example we will use the 'seall.h' header
file which will include all of the necessary header files for us. Now we must set up the
define mechanisms to include all of the appropriate files. For our example, the jseopt.h
header file will look like this:

/* jseopt.h - ISDK options for our application */

#define JSE_TEST_ALL /* All of the Test library */
#define JSE_CLIB_ALL /* All of the Clib library */
#define JSE_CLIB_FREOPEN 0 /* But not Clib.freopen() */
#define JSE_CLIB_GETENV 0 /* And not Clib.getenv() */
#define JSE_CLIB_PUTEN 0 /* Not Clib.putenv() */
#define JSE_LANG_ALL /* All of the language library*/
#define JSE_SELIB_INTERPRET 1 /* SElib.interpret() */
#define JSE_SELIB_DYNAMICLINK 1 /* SElib.dynamicLink() */

#include "seall.h" /* Include all the necessary files */

Now the only responsibility is adding these libraries and any necessary application
services. Our fictitious application has a special console I/O application service. Though
we won't show the source here, we can take the example console I/O service found in
srcapp\secon.c and modify it to suit our needs. We will assume this has been done, and
that the new function is AddMyService_ConsoleIO(). We will also include the Nombas
provided suspend function in srcapp\sesupen.c and the Errno service.

206 ScriptEase ISDK/C

Therefore we have a function that looks like the following:
jsebool
InitializeMyContext(jseContext jseContext)
{
 /* First we add our application services */
 AddMyService_ConsoleIO(jseContext);
 /* These other two are Nombas-provided */
 AddStandardService_Suspend(jseContext);
 /* found in srcapp\sesuspen.c */
 AddStandardService_Errno(jseContext);

 /* Now we load the libraries */
 if(!LoadLibrary_Test(jseContext))
 jseLibErrorPrintf(jseContext,
 "Error initializing Test library\n");
 else if(!LoadLibrary_Lang(jseContext))
 jseLibErrorPrintf(jseContext,
 "Error initializing Language library\n");
 else if(!LoadLibrary_Clib(jseContext))
 jseLibErrorPrintf(jseContext,
 "Error initializing Clib library\n");
 else if(!LoadLibrary_SElib(jseContext))
 jseLibErrorPrintf(jseContext,
 "Error initializing SElib library\n");
}

You call this function after the context is created with jseInitializeExternalLink. All of
these libraries are now ready to be used. Please note that you could have used a single
LoadLibrary B All() call to load the standard library. In addition, an libraries which are
unique to your application must still be loaded with jseLoadLibrary().

Compiling libraries as link libraries
Each of these libraries can also be compiled as a link library with a minimal amount of
effort. To build a link library, setup your project to compile as a DLL, Shared Object,
Code Fragment, or whatever is appropriate for you operating system. Then follow steps
1-3 from above.

The only difference is that you must define JSE_TOOLKIT_LINK instead of
JSE_TOOLKIT_APP. This signifies that you are compiling a link library. The only
symbols that you need to export from a library are 'jseLoadExtension' and
'jseExtensionVer'. If you are using solely one library, like just Clib (or some subset of
Clib), then your work is done. There is a default ExtensionLoadFunc() function in the
Clib source which will automatically load the Clib library.

If, however, you want to include more than one library, or part of your own library, then
you must write your own load function. To disable the default ones, first define
JSE_NO_AUTO_INIT. Then create a function similar to the following in a new file:

Integrating Language Objects & Libraries 207

jsebool FAR_CALL
ExtensionLoadFunc(jseContext jseContext)
{
 jsebool success;

 success = LoadLibrary_Clib(jseContext);
 if(success)
 success = LoadLibrary_SElib(jseContext);

 return success;
}

In this example we used both the Clib and SElib libraries, so we needed our own
ExtensionLoadFunc. It must be named as 'ExtensionLoadFunc' in order to be called
correctly. Once you have compiled successfully, you may then link this library to your
application through a '#link' statement in script.

208 ScriptEase ISDK/C

Preprocessor Options: Compile-Time Flags 209

Preprocessor Options:
Compile-Time Flags

The ScriptEase:ISDK can be compiled in many ways to suit many different needs. The
following is a list of those compile-time, preprocessor defines that determine the options
that are built into the ISDK binary libraries and applications.

An advanced user, prepared to modify the default behavior of the ISDK, can change one
or more of these options to get just the combination of speed vs. memory vs. standards
vs. extensions that they want. We have tested many combinations at Nombas, but not all
(the number of possible permutations is tremendous).

Note that in most cases the same value must be defined in the ISDK core, at compile
time, as in the application.

Name __JSE_DOS16__ or __JSE_DOS32__ or __JSE_OS2TEXT__ or
__JSE_OS2PM__ or __JSE_WIN16__ or __JSE_WIN32__ or
__JSE_WINCE__ or __JSE_CON32__ or __JSE_NWNLM__ or
__JSE_UNIX__ or __JSE_390__ or __JSE_MAC__ or
__JSE_PALMOS__ or __JSE_PSX__

Purpose One of these must be defined to describe the target operating system. A few
of these are not exclusive, for example when building for Windows CE you
should define __JSE_WIN32__ and __JSE_WINCE__.

Default Default depends on settings in your compiler

210 ScriptEase:ISDK/C

Name __JSE_DLLLOAD__ or __JSE_DLLRUN__ or __JSE_LIB__

Purpose One (and only one) of these must be defined for the method for linking
with the ISDK.
#define __JSE_LIB__ (most common) if the application links directly with
the ISDK.
#define __JSE_DLLLOAD__ (less common) if the application will
dynamically link with the ISDK at the time the application loads. This is
common for Windows systems.
#define __JSE_LIB__ (rare) in the unusual case where the ISDK is
dynamically loaded, but will be specifically loaded at run-time.

Default #define __JSE_LIB__

Name JSETOOLKIT_APP or JSETOOLKIT_CORE

Purpose One (and only one) of these must be defined to show if building the ISDK
CORE or building an application that uses the core.
Define JSETOOLKIT_CORE when compiling the files in SRCCORE that
make up the core interpreter.
Define JSETOOLKIT_APP when compile the application that will like
with the core interpreter.

Default #define JSETOOLKIT_APP

Name JSE_FLOATING_POINT

Purpose Define whether the native number is a floating-point value. The
ECMAScript standards defines an ECMA number as a 64-bit floating point
number. This option allows the default to be an integer instead, which
means that no floating-point will be supported. Removing floating-point
can make the code smaller and faster.
#define JSE_FLOATING_POINT 1 is floating-point numbers are to be
supported (jsenumber will be a floating-point value).
#define JSE_FLOATING_POINT 0 for no floating-point support
(jsenumber will be an integer).

Default #define JSE_FLOATING_POINT 1

Preprocessor Options: Compile-Time Flags 211

Name JSE_UNICODE

Purpose Define whether Unicode is supported in this implementation (i.e., whether
jsechar will be a Unicode or an ASCII character). If Unicode is specified
then all elements of strings will be two-byte Unicode values; if not
specified then strings are composed of 1-byte ASCII bytes. The
ECMAScript standard specifies that all strings will be Unicode, but most
ISDK users choose ASCII either to save space and complexity, or because
the system they are linking with does not support Unicode.
#define JSE_UNICODE 1 for Unicode strings
#define JSE_UNICODE 0 for ASCII strings

Default #define JSE_UNICODE 1 for __JSE_WINCE__
#define JSE_UNICODE 0 for all else

Name BYTE_ORDER or __BYTE_ORDER or BIG_ENDIAN

Purpose These defines are used to specify whether the underlying processor is
big-endian or little-endian. Various compilers use different means to
specify this information, and it is usually handled automatically. If support
is wrong for your system then adjust the related defining code in
JSETYPES.H

Default None - usually handled automatically by the compiler

Name JSE_POINTER_SIZE (also JSE_POINTER_SINT and
JSE_POINTER_UINT)

Purpose JSE_POINTER_SIZE defines the number of bits needed for a pointer (i.e.,
the number of bits needed to represent a memory address). This has been
tested with values of 32 (for most systems) and 16 (for DOS small-memory
models). Using a smaller size results in smaller code, but of course you
should not use a size different from the memory model of your underlying
system.
JSE_POINTER_SINT and JSE_POINTER_UINT are used to define how a
pointer will be cast to an integer, in those cases where casting is necessary.
These values are set automatically for JSE_POINTER_SIZE 8, 16, or 32.

Default #define JSE_POINTER_SIZE 32

212 ScriptEase:ISDK/C

Name JSE_POINTER_SINDEX and JSE_POINTER_UINDEX

Purpose These values define the size of integer needed to index into arrays. Usually
these integers will be the same as JSE_POINTER_SINT and
JSE_POINTER_UINT (see JSE_POINTER_SIZE) but in some cases you
can make them smaller if indexes into arrays will not span the full size
needed. For example, if a pointer size is 32-bits but you know that there
will never be more than 64K addressed in that memory, then these value
can be set to smaller integers to increase performance and to save memory.

Default For DOS16 or WIN16 if JSE_NO_HUGE is defined (see JSE_NO_HUGE
below)
#define JSE_POINTER_SINDEX sint
#define JSE_POINTER_UINDEX uint
For all other cases
#define JSE_POINTER_SINDEX slong
#define JSE_POINTER_UINDEX ulong

Name _NEAR_, _FAR_, NEAR_CALL, and FAR_CALL

Purpose In systems that distinguish between near memory and far memory, and near
calls and far calls, these values are sometimes used to specify memory use.
These values are usually set by default and you don't have to modify them.

Default For most systems these become comments. See JSETYPES.H for
exceptions.

Name JSE_NO_HUGE

Purpose For DOS16 and WIN16, and other systems that need special calls to
allocate inter-segment memory, the ISDK and related libraries will usually
call special routines when data falls outside the size of a default allocation
segment (see HUGE_MEMORY in UTILHUGE.H). If JSE_NO_HUGE is
defined then these special routines will not be used, saving memory use
and processing time, but memory sizes larger than a segment will not be
permitted, or may cause errors.
#define JSE_NO_HUGE if

Default This value is not defined by default.

Preprocessor Options: Compile-Time Flags 213

Name JSE_TOKENSRC and JSE_TOKENDST

Purpose These define whether the interpreter can create or execute pre-compiled
scripts.
#define JSE_TOKENSRC 1 if the script can compile plain ECMAScript
text into an executable token stream (see jseCreateCodeTokenBuffer()).
#define JSE_TOKENSRC 0 if a pre-compiled token buffer cannot be
created with this core.
#define JSE_TOKENDST 1 if this ISDK build can interpret pre-compiled
tokens (via the third parameter to jseInterpret()).
#define JSE_TOKENDST 0 if this script cannot interpret pre-compiled
token streams
Note: The term "token" is a holdover from earlier version of
ScriptEase:ISDK in which this really did preserve interpretation at the code
at the "token" stage. Beginning with 4.02, a second pass produces True
virtual machine opcodes, and it is these opcodes that are saved and
executed in these "token" buffers.

Default #define JSE_TOKENSRC 1
#define JSE_TOKENDST 1

Name JSE_SECUREJSE

Purpose This defines whether the security guard mechanism is enabled in this
version of the ISDK core. A small amount of memory can be saved, and
performance gained, if the security manager is not enabled, at the expense
of losing this mechanism for preventing rogue scripts from making
dangerous calls.
#define JSE_SECUREJSE 1 to enable the security manager
#define JSE_SECUREJSE 0 to disable the security manager

Default #if defined(__JSE_DOS16__)
define JSE_SECUREJSE 0
#else
define JSE_SECUREJSE 1
#endif

214 ScriptEase:ISDK/C

Name JSE_C_EXTENSIONS

Purpose Define whether the "C-like" extensions that Nombas has added to the
ECMAScript language should be allowed. These extensions allow for the
cfunction keyword for function, in which parameters can be passed be
reference (instead of by value), and in which strings and buffers are
mutable, bytes can be specified individually, and array math is allowed on
strings, buffers, and arrays.
#define JSE_C_EXTENSIONS 1 to allow C-like extensions for any
declared cfunction
#define JSE_C_EXTENSIONS 0 to disallow C-like extensions, and stick
to the ECMAScript behavior in all functions

Default #define JSE_C_EXTENSIONS 1

Name JSE_LINK

Purpose This value defines whether run-time linking of ScriptEase libraries is
enabled. These are the libraries added to a script at run time with the #link
directive. This is not part of the ECMAScript standard.
#define JSE_LINK 1 to enable run-time linking with the #link directive.
#define JSE_LINK 0 to disable #link handling

Default #define JSE_LINK 0 for systems without a default run-time linking method
#define JSE_LINK 1 for systems with a default run-time linking method

Name JSE_INCLUDE

Purpose This directive defines whether run-time inclusion of script files within
other script files is enabled. This file-within-a-file inclusion is available
with the #include directive. This is not part of the ECMAScript standard.
#define JSE_INCLUDE 1 to enable run-time inclusion with the #include
directive
#define JSE_INCLUDE 0 to disable #include handling

Default #define JSE_INCLUDE 1

Preprocessor Options: Compile-Time Flags 215

Name JSE_DEFINE

Purpose This defines whether #define directive will be recognized by the
interpreter. #define acts much like the C-language version for text
replacement, but does not define macro substitution. This is not part of the
ECMAScript standard.
#define JSE_DEFINE 1 to enable the #define directive
#define JSE_DEFINE 0 to disable #define handling

Default #define JSE_DEFINE 1

Name JSE_CONDITIONAL_COMPILE

Purpose This defines whether the interpreter/compiler will recognize C-like
preprocessor conditionals, which are #if, #elif, #else, #endif, #ifdef, and
#ifndef. The conditionals are not part of the ECMAScript standard.
#define JSE_CONDITIONAL_COMPILE 1 to allow conditional
preprocessing
#define JSE_CONDITIONAL_COMPILE 0 for no conditional

Default #define JSE_CONDITIONAL_COMPILE 1

Name JSE_TOOLKIT_APPSOURCE

Purpose This defines whether the interpreter can read ECMAScript source text in a
file-like way. If source given to jseInterpret() is only in-memory then this
need not be defined.
#define JSE_TOOLKIT_APPSOURCE 1 to read source for the file-like
routines
#define JSE_TOOLKIT_APPSOURCE 0 to disallow source file reading

Default #define JSE_TOOLKIT_APPSOURCE 1

216 ScriptEase:ISDK/C

Name JSE_PROTOTYPES

Purpose This defines whether ECMAScript "inheritance" is enabled through the
prototype mechanism, in which case if an object does not contain the
referred-to method or property then its ._prototype chain will be searched.
This is standard ECMAScript behavior, and very useful, but can add
memory and slow-down performance a small amount.
#define JSE_PROTOYPES 1 to allow ._prototype inheritance
#define JSE_PROTOYPES 0 to turn off inheritance through ._prototype

Default #define JSE_PROTOTYPES 1

Name JSE_DYNAMIC_OBJS

Purpose This allows intrinsic behaviors of objects to be exposed for overridden, so
that behavior such as ._get, ._put, ._construct, ._delete, and a few more, can
be implemented in object-oriented ways by the underlying C-code or
ECMAScript code. This is not technically part of ECMAScript but it is
how many of the pre-defined ECMAScript objects are implemented and it's
very useful, while adding only a small amount to additional memory usage
and performance loss.
#define JSE_DYNAMIC_OBJS 1 for dynamic object behavior
#define JSE_DYNAMIC_OBJS 0 for no exposition of intrinsic methods

Default #define JSE_DYNAMIC_OBJS 1

Name JSE_API_ASSERTLEVEL

Purpose This defines the level of parameter-checking performed by the API-level
functions. A higher level of error-checking adds a little more code and
memory usage, but prevents common errors by API users.
#define JSE_API_ASSERTLEVEL 0 for no parameter checking
#define JSE_API_ASSERTLEVEL 1 to check most parameters against
NULL
#define JSE_API_ASSERTLEVEL 2 to check parameters for NULL, check
against other commons errors, and insert and validate magic "cookies"
within valid allocated structures.

Default #if defined(__JSE_DOS16__)
define JSE_API_ASSERTLEVEL 0
#else
define JSE_API_ASSERTLEVEL 2

Preprocessor Options: Compile-Time Flags 217

Name JSE_API_ASSERTLEVEL
#endif

Name JSE_API_ASSERTNAMES

Purpose This parameter defines whether function names will be included in error
messages triggered by JSE_API_ASSERTLEVE>0.
#define JSE_API_ASSERTNAMES 1 to include names of API functions
in error messages
#define JSE_API_ASSERTNAMES 0 to prevent API names from being
included in error messages

Default #if defined(__JSE_DOS16__)
define JSE_API_ASSERTNAMES 0
#else
define JSE_API_ASSERTNAMES 1
#endif

Name JSE_COMPILER

Purpose This defines whether the compiler portion of the interpreter is enabled.
Without the interpreter enabled the core interpreter can become smaller by
1/3 to 1/2.
#define JSE_COMPILER 1 to allow compilation from plain-text script
source
#define JSE_COMPILER 0 to disallow compilation, only interpreting
pre-compiled code
Note: Many of the other preprocessor directive are not sensible if
JSE_COMPILER is not enabled. #error messages on compilation will alert
to any incompatibilities.

Default #define JSE_COMPILER 1

218 ScriptEase:ISDK/C

Name JSE_INLINES

Purpose This options is used where performance can improve by using inline
functions (e.g. C macros). The drawback is that these inlines can use more
memory.
#define JSE_INLINES 1 to use inlines (macros) instead of function calls,
and get some performance improvements
#define JSE_INLINES 0 to use function calls instead of inlines (macros),
and use a little less memory

Default #if defined(__JSE_DOS16__) || defined(__JSE_WIN16__)
define JSE_INLINES 0
#else
define JSE_INLINES 1
#endif

Name JSE_MIN_MEMORY

Purpose In places where the core interpreter may be coded one way to improve
performance, but another way to reduce memory usage, this define can
specify which option to favor.
#define JSE_MIN_MEMORY 1 to favor small size
#define JSE_MIN_MEMORY 0 to favor performance

Default #if defined(__JSE_DOS16__)
define JSE_MIN_MEMORY 1
#else
define JSE_MIN_MEMORY 0
#endif

Name JSE_TYPE_BUFFER

Purpose This defines whether jseTypeBuffer will be a valid native data type.
ECMAScript does not include any buffer type.
#define JSE_TYPE_BUFFER 1 to allow the jseTypeBuffer native type
#define JSE_TYPE_BUFFER 0 for no native jseTypeBuffer

Default #define JSE_TYPE_BUFFER 1

Preprocessor Options: Compile-Time Flags 219

Name JSE_CREATEFUNCTIONTEXTVARIABLE

Purpose This defines whether a compiled function can be "decompiled" to a string
variable. To do so requires saving the tokens before compilation, which can
require a lot of memory that is used for no other purpose.
#define JSE_CREATEFUNCTIONTEXTVARIABLE 1 to create
full-source text from a compiled function
#define JSE_CREATEFUNCTIONTEXTVARIABLE 0 to create minimal
stub text from compiled functions

Default #if defined(__JSE_DOS16__)
define JSE_CREATEFUNCTIONTEXTVARIABLE 0
#else
define JSE_CREATEFUNCTIONTEXTVARIABLE 1
#endif

Name JSE_GETFILENAMELIST

Purpose Defines whether the names of files are preserved for a call to
jseGetFileNameList(). A small amount of memory is saved by not
preserving this information.
#define JSE_GETFILENAMELIST 1 to allow jseGetFileNameList()
#define JSE_GETFILENAMELIST 0 to remove jseGetFileNameList()

Default #if defined(__JSE_DOS16__)
define JSE_GETFILENAMELIST 0
#else
define JSE_GETFILENAMELIST 1
#endif

Name JSE_BREAKPOINT_TEST

Purpose Define whether the jseBreakpointTest() is enabled for debugging help. This
option uses a small amount of memory.
#define JSE_BREAKPOINT_TEST 1 to enable jseBreakpointTest()
#define JSE_BREAKPOINT_TEST 0 to disable file/line breakpoint testing

Default #if defined(__JSE_DOS16__)
define JSE_BREAKPOINT_TEST 0
#else
#define JSE_BREAKPOINT_TEST 1
#endif

220 ScriptEase:ISDK/C

Name JSE_MEM_DEBUG

Purpose When this option is enabled, the interpreter will check for invalid memory
usage. It slows down execution considerably and is recommended only for
initial development. If this option is enabled, the interpreter will monitor all
memory allocated by calls to jseMalloc(), jseMustAlloc() ,
jseMustRealloc() and jseRealloc() and freed with calls to jseMustFree().
jseMustAlloc() and jseMustRealloc() will abort if the interpreter is unable
to allocate memory, while jseMalloc() will return NULL, but otherwise
these calls are identical to their C counterparts except that the jseContext is
passed before the other parameters. By default, JSE_MEM_DEBUG is
enabled if NDEBUG is not defined.
#define JSE_MEM_DEBUG for debug-level checks on memory use

Default #if !defined(NDEBUG)
#define JSE_MEM_DEBUG 1
#endif

Name JSE_FAST_MEMPOOL

Purpose This allows many of the smaller structures, which are malloc'ed and freed
frequently, to be managed by memory pools. Use of memory pooling for
these pointers can speed up runtime execution (approx. 40% in many cases)
especially in systems with poorly-performing underlying allocation
handlers (such as Win32 DLLs). But use of memory pooling also causes a
greater use of memory.
#define JSE_FAST_MEMPOOL 1 to use faster memory pooling.
#define JSE_FAST_MEMPOOL 0 to turn on memory pooling.

Default #if defined(__JSE_DOS16__)
define JSE_FAST_MEMPOOL 0
#else
define JSE_FAST_MEMPOOL 1
#endif

Name JSE_HASH_STRINGS

Purpose Instead of the standard method of string table management, which uses
little memory and is permanent, the hash table method uses a greater
amount of memory but allows for removal. If this is defined, then entries
are removed when they are no longer needed, which is important for people
implementing long-running contexts. For example, some users like to keep

Preprocessor Options: Compile-Time Flags 221

Name JSE_HASH_STRINGS
a single global context. Under the standard method of string table
management, every time a new string was added it would remain until the
context was destroyed, perpetually increasing memory. The hash table
implementation has also been optimized to be faster, and it is now possible
to take advantage of the dynamic-object optimization which only works
with the hash table.

Default JSE_HASH_STRINGS 0 if
JSE_MIN_MEMORY==1JSE_HASH_STRINGS 1 if
JSE_MIN_MEMORY==0

Name JSE_ONE_STRING_TABLE

Purpose By default the string table is stored in the global call structure. But if this
flag is specified a single global static string table is used for all interprets,
regardless of contexts or threads.

Default JSE_ONE_STRING_TABLE 0

Name NDEBUG

Purpose Most C compilers will use the NDEBUG definition to determine whether
extra debugging code will be compiled. This is most commonly used for
assert() statements (which are used liberally throughout the ISDK core
source), but the ISDK also performs many extra self-debugging functions
when NDEBUG is not defined. This extra code provides checks on code
integrity, and is important while porting, but has a tremendous hit on
footprint and performance.

Default Many compilers set this on or off based on compiler options

222 ScriptEase:ISDK/C

Memory Management 223

Memory Management
Memory usage can be critical to many applications. SE420 expands on the control of
memory that was available in SE410. The biggest change is that we have moved from a
reference counting scheme to garbage collection. This was done with no change to the
API, so all existing programs will continue to operate unchanged. This guide will explain
all of the memory controls available to a ScriptEase ISDK application as well as some
tips on optimizing memory performance.

One of the main controls is the JSE_MIN_MEMORY define. By default, only DOS and
Windows 16-bit are built with this value on (defined to 1). All other ISDKs are built with
it off (defined to 0.) You can override it for your application, like all of the defines
mentioned in this section, by predefining it in your compiler. JSE_MIN_MEMORY
determines the default goal of the ISDK. If on, the goal is to minimize memory usage, if
off it is to minimize execution time. This define determines what default value will be
selected for all of the other defines described in this chapter. Of course, you can always
override any particular define yourself.

Please note that the rest of this section is necessarily pretty complex, and delves into
some of the internals of the ScriptEase engine. You may find it confusing. It is only
necessary if memory usage is of critical importance. For most applications on modern
systems (with lots of memory), the default settings will work fine. Even for systems low
on memory, it is often enough to define JSE_MIN_MEMORY to be 1. I would also
suggest looking at the standard ECMA library and turning off some of the lesser-used
functions, as they take a lot of code space, especially the regular expression code. The
individual settings will only be of interest to the customer who wants exacting control
over how memory is used. Only the sections titled 'STRING DATA' and particularly
'OBJECT DESTRUCTORS' will be of interest to most customers, so you might want to
skip ahead to them.

The Internal Stack
ScriptEase uses an internal stack for passing parameters to functions as well as
calculating the value of expressions used in the program. There are two ways to build the
stack. The faster, more memory consuming way is to simply allocate a large block of
memory for it. This is the default setting if JSE_MIN_MEMORY is defined to 0. Slower,
but more memory efficient, is to grow the stack in pieces as more room is needed.
JSE_MIN_MEMORY set to 1 does this. One disadvantage of the faster method is that the
stack can run out of memory if the limit you set when compiling is reached. This only
matters in highly recursive scripts. The growing stack will continue to function until
system memory is exhausted.

224 ScriptEase:ISDK/C

You can determine which kind of stack is used by setting JSE_FIXEDSTACK to 1 or 0.
If you do turn on the fixed stack, you can also set its size. The define
JSE_FIXEDSTACK_DEPTH is the amount of entries that are allocated for it. This value
defaults to 10000 entries. Each entry consumes approximately 15 bytes. This is one of the
major memory requirements for ScriptEase, so if you are low on memory, we
recommend turning the fixed stack off. Each function called needs one entry on the stack
per parameter passed to it as well as some entries for any expression it is in the middle of
parsing. A typical function will use between 2-10 entries, so expect to be able to
recursive to a depth of approximately 1500 with the default stack settings. That should be
fine for almost all scripts.

Object Descriptors And Members
In a typical script, the majority of memory will be devoted to storing objects. SE420 uses
memory more efficiently than in SE410, namely that important structures are allocated in
chunks instead of singularly. Since the system adds an overhead to each allocation
(typically 12 bytes), these allocations could use a sizeable fraction of the total memory
allocated for overhead, which is now minimized.

Two structures are very important internally, the object descriptor (VarObj) and its
members (each described by a Var structure.) Each is usually allocated in chunks of 256
entries. With JSE_MIN_MEMORY on, it is reduced to 128 entries. This define,
JSE_VAR_CHUNK_SIZE, can be changed, but it probably will hurt to move it past
either extreme. Allocating bigger chunks will result in lots of unused entries. Making
each chunk too small means that the overhead as described above will be large in
comparison to the chunk's size. I recommend 64 entries as probably a bare minimum size.
Note that the growable internal stack described above is a linked-list of these chunks, so
this define also determines how much the stack grows with each extension.

Garbage Collection And The Free Lists
Although allocated in chunks, these structures are then moved to a free list individually.
When the engine starts, it fills up the free lists by allocating chunks and adding each entry
of the chunk onto the appropriate list until it is filled. When any list is empty and an item
from that list is required, garbage collection is triggered. The vast majority of collections
happen when the Var or VarObj free lists are emptied. The garbage collector does a
mark-and-sweep collection. All items currently in use by the engine or locked via the API
are marked. Then all items are examined, and those that are not marked are free to be
added appropriate free list. Finally, the free lists are 'filled-up' to their maximum number
of entries by allocating more chunks. This last part is done because otherwise once most
of the items were used, each collection would only free up a few items, meaning
collection will be necessary soon again, and this constant collection would drastically
slow execution.

Memory Management 225

The size of these free lists determine how much memory is consumed and how often
collection is done. Making the lists big will mean collection happens less frequently, but
that more memory is consumed. Making them small will mean much more garbage
collections but less wasted memory. However, shrinking them too much isn't
recommended, or performance will suffer greatly and very little extra memory will
become available. On the other extreme, making them too big will mean each garbage
collection pass will need to sweep more memory looking for free items, so if the list sizes
are very big, the few memory collections will take lots of time, negating much of the
benefits of reducing the number of collections.

The size of these pools in number of elements (not number of chunks) is determined by
the defines VAR_POOL_SIZE and VAROBJ_POOL_SIZE. The default values are 4000
and 256 respectively. If JSE_MIN_MEMORY is on, the default values are 256 and 128
respectively. Please note that these pools do not limit the amount of memory used. They
are the ideal amount of extra, unused entries kept on hand to be used as needed. Any
objects that are in use also consume memory that is not counted in these pools. The
ScriptEase engine will keep allocating memory for scripts that try to use a lot of memory
(big algorithmically-generated objects come to mind) until memory allocation fails, at
which point a fatal error occurs.

Creating and destroying object members will create garbage eventually forcing a
collection. However, simple computations on numbers does not create any garbage. Thus,
calling a lot of functions (which create and destroy objects internally for each call) will
require collection, and be much slower than programs that only do a lot of calculations
which is very fast.

String Data
Strings are not pooled, each string entry is allocated as needed and freed when no longer
used. This is done because strings are all of variable size. Pools only make sense when
each item in the pool is identical. Because there is no pool for string allocation, each
string allocated is always allocated from the system. If this was all that was done, garbage
collection due to string allocation would never happen until free memory was exhausted,
so strings would stick around using up memory unless garbage collection was triggered
for some other reason. This, obviously, is not acceptable.

To remedy this, the defined value JSE_STRINGS_COLLECT is the number of bytes of
string allocation that will always trigger a garbage collection. Each time the engine has
allocated this many bytes of string data, it performs a garbage collection to free up
whatever strings are unused. It then resets the counter, ready to garbage collect again
when the limit is again reached. Note that this is not how much memory is in-use of

226 ScriptEase:ISDK/C

string data, it is simply a counter. There is a good reason it is not how much strings are in
use. If it was, once your program had that much strings in use permanently (such as
members of objects), every string allocation would then trigger a garbage collection
(which would accomplish nothing, since all the strings are still in use) and performance
would slow to a crawl.

A good heuristic is to set the value to 1/3 to 1/2 the total amount of memory you would
like to 'reserve' for strings. Again, if a script uses a lot of strings that are not freed, the
ScriptEase engine will keep allocating space as long it is available. This value just
determines how often the engine goes ahead and cleans up whatever strings it has used
but are now free. Making this value very high if you have lots of memory will NOT
negatively affect performance, unless it is so high that ScriptEase begins to use virtual
memory.

When deciding on the value, note that ScriptEase attempts to track how much overhead
each string allocation is using, so the value you give should exactly correspond to real
memory usage, even if your script allocates a lot of small strings. The default value for
JSE_STRINGS_COLLECT is 1000000 (1 million), 100000 if JSE_MIN_MEMORY is
on. If your system is on very limited memory, you'll want to shrink this value even more.

It should be mentioned that if your program is the only one on the system, changing this
value is probably pointless. If you run out of memory, garbage collection will be
performed, so if there is enough memory to continue, ScriptEase will do so. This define
only affects how much memory ScriptEase has allocated but is not using. If you have
another program running that can run out of memory because ScriptEase is using it, then
this value will be important. If your application is doing its own memory allocation, you
can call 'jseGarbageCollect()' if you run out of memory to force the ScriptEase engine to
release as much memory as possible, and try again.

Object Destructors
During garbage collection when an object is noted as being freed, and it has a distracter,
that object is put on a list. Once garbage collection finishes, those destructors are called.
After a destructor is called, the destructor (i.e., the '_delete' property) is removed. This is
done because an object can 'resurrect' itself (for instance by assigning itself to a global
variable) and thus no longer need to be freed. If the destructor is left around, it can again
become free and then resurrect itself, easily leading to an infinite loop. You should not
expect to be able to destroy an object more than once.

Since destructors are called when an object is freed, and that only happens in garbage
collection, do not expect destructors to be called immediately when the object is no
longer in use. Also, do not expect them to be called in any particular order. An API

Memory Management 227

function is provided to force a garbage collection to occur. This will force all destructors
to be called for any objects that are currently free. This API call, jseGarbageCollect(),
also allows the collector to be turned off. During this time, no garbage collection is
performed, instead whenever memory is used up, new memory is always allocated. This
setting will slow performance noticeable, and is only recommended for an application
that wants to ensure no garbage collection happens during a particular piece of code. See
the API documentation for full details on this call.

228 ScriptEase:ISDK/C

MBCS Support 229

MBCS Support In SE 4.20
Nombas ScriptEase™ version 4.20 introduces support for Multibyte Character Sets
(MBCS). We have traditionally supported ASCII and Unicode character sets only. Most
of the changes involved with supporting MBCS are internal to the ScriptEase engine, and
will not affect those using the ISDK. This document will explore the issues that are
relevant to the ScriptEase:ISDK user.

In order to use the ScriptEase MBCS support, you will need to define the macro
'JSE_MBCS' to be 1 in your 'jseopt.h' file. In addition, if you are porting to a new
operating system or C library you may need to edit the file 'seuni.h' found in the 'srcmisc'
directory. SEUNI.H has the defines necessary to call multibyte versions of common
functions.

We also make a few minor assumptions about MBCS which you should verify are true
for your system. We expect all whitespace characters and the string terminator '\0' to be
stored using a single byte. Second, we expect that the second byte of a 2-byte MBCS
character will never be the '\0' byte. This allows an MBCS C-style string to be treated as
a block of memory terminated by a '\0'. This allows significant performance gains for
times when the string must be treated as a whole and we are not interested in its
individual characters.

Writing MBCS Compatible Code
If you want to write wrapper functions and ScriptEase API applications that will work in
an MBCS environment, there are a number of things you should keep in mind. First,
string pointers should not be defined as 'char *' and characters should not be 'char's.
Instead, use the 'jsecharptr', ‘jsecharptrdatum’, and 'jsechar' typedefs. Doing so is also
necessary for Unicode compatibility and is highly encouraged even if you don't
immediately plan to use any character set other than ASCII. A jsechar is the size of the
largest individual byte, while a jsecharptrdatum is the size of an individual element as
seen by your underlying C library (typical sizes for jsechar/jsecharptrdatum in ASCII:1/1,
Unicode:2/2, MBCS:2/1).

You can allocate arrays of jsechars just like you would allocate arrays of chars. This is
typically done for a temp storage space when you know a string can never grow past a
certain size. These arrays will always be big enough to hold the given number of
characters, even if space may be unused depending on what characters it eventually
holds.

When accessing individual elements of a string, you should almost never access a string
directly using the '[]' or '*' operators, nor can you directly manipulate a string pointer
using '++' or '+' or '-'. Instead, you need to use the macros defined in 'seuni.h'. If you use
these macros on an ASCII or Unicode build of our engine, they end up doing exactly the
above operators, but for MBCS builds they get turned into real function calls.

230 ScriptEase:ISDK/C

ScriptEase API Notes
For all API calls in ScriptEase that deal with string lengths and offsets, the API expects
logical lengths. This means you pass the number of characters, not the number of bytes.
There are only a few routines in which this matters.

The reasoning is that most script-related routines make most sense with logical
characters. When you want to use jseSetArrayLength, for instance, you are changing the
JavaScript length, i.e. changing the number of characters in the string.

There are a few routines in which both ways make sense. For instance, sometimes when
you call jseGetString() you want the length to be in bytes to know how much buffer space
was used. In other cases, you want logical characters because you are then going to
iterate through the string. We have chosen logical characters for a number of reasons.
First compatibility; existing code, for our libraries and written by customers, expects the
returns in logical characters, and we would need to rewrite it for MBCS. Second,
simplicity: logical characters are the same for all builds, so code correctly written (see
above) will work on any character set build of ScriptEase.

Speed And Size
Executables built with MBCS support will be significantly larger than those without.
This is because MBCS requires calling functions to do common string manipulation, such
as retrieving a character or incrementing a string pointer to point to the next character.
These functions are implemented in a regular build by the '[0]' or '*' C operators for
retrieving characters and the '++' operator for incrementing a pointer. Obviously, most C
compilers will optimize these operations highly, resulting in far less code space than that
necessary to call a function.

Performance suffers for the same reason that executable size increases. However, there
are a number of places in the core in which performance is many times worse. This is
due to the nature of our translation; we have done in se420 a more-or-less direct port of
our existing code to support MBCS. While this ensures correctness, it is far from as
efficient as possible. We are committed to improving performance in future versions of
ScriptEase by finding especially slow performing places in the code and optimizing them.
Customers who have a script that shows very poor performance should send that script to
Nombas so that we can look at why it is so slow and improve it.

Performance suffers in MBCS builds for the same reasons that executable size increases.
We are committed to improving performance in future versions of ScriptEase by finding
any especially slow-performing places in the code and optimizing them. Customers who
have a script that shows poor MBCS performance should send that script to Nombas so
that we can look at how to optimize that section of the core engine for MBCS.

Integrating the ScriptEase Debugger 231

Integrating the ScriptEase Debugger

Using the ScriptEase:ISDK, you can debug your applications using Nombas's debugger.
The debugger itself is a Windows application, so you'll need a windows machine to do
your debugging on. However, your application can be running on any machine that can
communicate with your debugging machine. Nombas provides support for debugging via
TCP-IP, but you can extend the debugger to use other communication protocols.

For end-user information on using the debugger, please see the chapter, AUsing the
ScriptEase Debugger.@

Using a Nombas protocol model
Nombas has provided two models of debugging to cover many situations. First, on
windows systems, you can communicate via shared memory. In this case, the debugger
and the application must both be running on the same Windows machine. Either the
application can start the debugger, or the debugger can start the application (depending
on how you set it up.)

If you are debugging using the TCP-IP model, you need to run the ScriptEase IDE
Network Extender (called the proxy) on the debugging machine before running your
application. The application will communicate with the proxy in place of the debugger.
The proxy will make sure the debugger starts up and receives the information it needs to
debug your application.

Defining your own protocol model
To define a new protocol model for communication between the debugger and your
application requires you to provide a number of routines linked with your application.
These are documented at the top of the file 'srcdbg\debugme.h'. You can examine the file
'srcdbg\debugme.c' to see how these routines are implemented in the Nombas-provided
models. If you are defining your own model, you will need to also add that model to the
proxy.

Code changes to your application
You must do six things to make sure your application is debuggable. They are described
in order:

232 ScriptEase:ISDK/C

Set Options
#define JSE_DEBUGGABLE 1

If you are using TCP-IP, set these flags:

#define JSE_DEBUG_TCPIP
#define JSE_DEBUG_MASTER
#define JSE_DEBUG_RUN
#define JSE_DEBUG_FILES
#define JSE_DEBUG_REMOTE
#define JSE_DEBUG_PASSWORD

(Note: JSE_DEBUG_PASSWORD only activates the password code. You must still actually
setup a password if you are going to use it.)

Otherwise, if using shared memory set these flags:

#define JSE_DEBUG_MEMORY
#define JSE_DEBUG_RUN

This setup for shared memory assumes you want the debugger to start the application. If
you'd like it to be the other way around (i.e. the application starts the debugger), add:

#define JSE_DEBUG_MASTER

Add files to your project
Next add the file 'srcdbg\debugme.c' to your application. Make sure the 'srcdbg' directory
is in your include path if it isn't already.

Integrating the ScriptEase Debugger 233

Update your ToolkitAppData structure and jseopt.h
If you don't currently allocate one, you must do so. You can get a definition for one by
include 'seclib\seseclib.h'. Alternately, if you already are using your own such structure,
add the following to it:

#if defined(JSE_DEBUGGABLE)
struct debugMe * debugme;

#endif

You need some includes added at the end of your jseopt.h file:

 #if defined(JSE_DEBUGGABLE)
 #if defined(__JSE_OS2TEXT__) ||

defined(__JSE_OS2PM__)
 #include <sys\socket.h>
 #include <netinet\in.h>
 #include <netdb.h>
 #include <utils.h>
 #include <nerrno.h>
 #include <sys\ioctl.h>

 #endif
 #include "dbgshare.h"
 #include "proxy.h"
 #include "debugme.h"

 #endif

Initialize debugging
After you have initialized your external link and added any libraries, but before you start
interpretting you must initialize the connection to the debugger. This is done with the
following code:

 #if defined(JSE_DEBUGGABLE)
 debugmeInit(jsecontext,<command line>,<instance>);

 #endif
The 'command line' is only needed for shared memory debugging if the debugger is going
to be starting up your application. It should be the entire command line, which is easily
constructed by concatenating the entries of the argv[] array separated by spaces. The
routine will extract the debugging command information from the command line. When
it returns, you must reparse the command line into individual arguments (which is easily
accomplished using strtok().) For the TCP-IP model, the command line parameter is
ignored, so you can safely pass NULL.

The 'instance' parameter is the Windows HINSTANCE value for your program. It is only
needed if debugging on a Windows platform using a windowed application (as opposed
to a console application.) On other platforms, debugmeInit() does not take a third
parameter.

Finally, for the TCP-IP version, you must specify what machine will be the debugging

234 ScriptEase:ISDK/C

machine. You do this by setting the environment variable 'REMOTE_ADDR' to the
machine host name of the debugging machine. You can set this either before launching
your program or within your program before calling debugmeInit(). The machine in
question needs to have the proxy running as described above.

Call the debugger hook
Finally, you must call the debugger in your MayIContinue function. Here is an example.
If you already do some code in your function, do this in addition.

 jsebool JSE_CFUNC FAR_CALL
 ContinueFunction(jseContext jsecontext)
 {

 struct ToolkitAppData * SeData =
ToolkitAppDataFromContext(jsecontext);

 #if defined(JSE_DEBUGGABLE)
 if (NULL != SeData->debugme)
 {

 debugmeDebug(SeData->debugme,jsecontext);
 if (jseQuitFlagged(jsecontext))

 return False;
 }

 #endif

 jsecontext = jsecontext; /* to prevent warning
about unused

 /* variable */
 return True;

 }

Integrating the ScriptEase Debugger 235

Terminate debugging
This code shows you how to terminate debugging. It assumes 'AppData' is a pointer to
your application data structure.

 # if defined(JSE_DEBUGGABLE)
 {

 struct debugMe *debugme = AppData->debugme;

 if (NULL != debugme)
 {

 debugmeHasTerminated(debugme);

 while (debugme)
 {

 debugmeDebug(debugme,jsecontext);
 debugme = AppData->debugme;
 }

 }
 debugmeTerm(jsecontext);

 }
 # endif

You must terminate debugging before you destroy the context. You usually terminate
debugging right before you exit. This means all scripts you interpret will be debugged in
a single session. However, you can terminate then restart debugging if you want each
jseInterpret() to be in its own debug session.

Notes
Once you have made these changes, your application can be debugged. You can make all
of these changes and still not debug your application if you skip Initialization of
debugging. So, if you want, you can only initialize the connection to the debugger if your
user selects a special 'debug application' menu item or such.

You can currently only debug scripts that have a filename (i.e. if you tell jseInterpret() to
interpret the contents of a file.)

Samples
In seisdk\samples\debug, you can find a modified version of 'simple0' that is debuggable.
Run the application from an MS-DOS prompt after first setting 'REMOTE_ADDR' as
described above.

236 ScriptEase:ISDK/C

Example: Modifying your JSEOPT.H file for debugging
Any application that uses the debugger must have the following lines in its JSEOPT.H
file:

 #define JSE_DEBUGGABLE 1
 #define JSE_DEBUG_RUN
Set these flags if you will be using the debugger remotely:

 #define JSE_DEBUG_TCPIP
 #define JSE_DEBUG_MASTER
 #define JSE_DEBUG_FILES
 #define JSE_DEBUG_REMOTE
 #define JSE_DEBUG_PASSWORD
Set this flag if you will be using the debugger locally:

 #define JSE_DEBUG_MEMORY
With the options described above, the debugger will launch the application in order to
debug it. For the reverse, in which the application launches the debugger, define the
following:

 #define JSE_DEBUG_MASTER

Security 237

Security

As a scripting language, ScriptEase provides you with the power to completely control
your system. But there are times when this power can be dangerous. Many applications,
such as those using ScriptEase's distributed scripting capabilities, may need to run scripts
that you do not want to have access to all of ScriptEase's power. You don't want these
scripts to delete files on your machine, read important data and transmit it to a remote
machine, execute arbitrary system programs, or any other such activities. ScriptEase
security allows you to limit scripts so they cannot do these things.

ScriptEase security works by dividing functions on the system into secure functions,
those which can perform no dangerous actions, and insecure functions, those which can
perform dangerous activities. When you execute a script, you can attach a security
manager to it. This manager will determine which insecure functions can be called.

If the script tries to call an insecure function which the manager does not allow, it will not
call the function and instead generate a security error. By using ScriptEase security, you
can run scripts you trust and give them full access to dangerous functions, such as
Clib.system() and Clib.remove(), while denying access to these same functions to other
scripts you don't trust.

Writing a Security Manager
Whenever you wish to interpret a script, via the API using jseInterpret() or in a script
using SElib.interpret(), you can attach a security manager to that child script you are
running. As long as that child script calls other functions in only within that script, it is
allowed to do so. If it tries to call an insecure function, your security gets called.
Obviously, insecure wrapper functions are always checked.

In the case that a script is using SElib.interpret() to interpret a child script, that child may
be able to try to call functions in the parent. Since the security you added only applies to
the child script, the functions in your original script are also considered insecure to the
child. The child must get permission to call them exactly like it would need to get
permission to call an insecure wrapper function directly.

You can think of your security manager as a big wall with a heavily guarded door. As
long as the script stays on its side of the wall, it is fine. The parent script and all wrapper
functions are on the other side of the wall. If the child script wants to get access to them,
it has to convince the guards to let it through.

238 ScriptEase:ISDK/C

Let's look at the pieces that make up these security guards.

jseSecurityInit
This function is the main security function. It is run before the script it is protecting is
run, and it sets up the security the child is going to be run under. It specifies which
functions the child will be allowed to call. By default, the child will not be allowed to call
any insecure functions. In this function, you explicitly specify which insecure functions
the child will be allowed to call. You do this by calling the 'setSecurity' function. It is a
member function of all ScriptEase functions.

In case that is confusing, a quick example of a jseSecurityInit function should clear it up:

function jseSecurityInit(security_var)
{

Clib.remove.setSecurity(jseSecureAllow);
}

This particular security initialization function is written in ScriptEase. However, you can
also implement all of these functions using the ScriptEase API and wrapper functions.
We will implement the examples as scripts for clarity. The first thing you notice about the
function is that it takes a parameter, we have named it 'security_var'. We did not use it in
this example. This parameter is the 'security variable' described below.

The body of the function will usually just list which functions are to be allowed. Notice
that we call the 'setSecurity' as a member of the particular function we want to allow.
This function takes one parameter, the security state of the function. 'jseSecureAllow'
specifies that this function is allowed to be called.

There are two other values we could have used instead. 'jseSecureReject' will cause calls
to the function to fail. This is the default for all functions, so it is usually redundant to
specify it. However, if 'setSecurity()' is called more than once on the same function, the
last call takes precedence. You can use this value to undo allowing access to a particular
function.

The final value is 'jseSecureGuard' which says that any time this function is called, we
must first call the jseSecurityGuard function to determine if the call will be allowed. This
function is described below.

Note that the 'setSecurity' member function can only be called in a security
initialization function. Trying to call it at other times will generate an error.

jseSecurityTerm
Whenever you have an initialization function, you have a corresponding termination

Security 239

function. Like 'jseSecurityInit', this function gets a single parameter, the security variable
(described below.) This function is rarely needed, and you can simply not specify it most
of the time. It is included so that you can clean up the security variable before exiting.
You don't need to 'unset' the setSecurity() calls done, as the engine knows that they go
away when they are no longer used. The security termination function looks like this:

function jseSecurityTerm(security_var)
{

/* do any necessary cleanup */
}

This function is not usually called until the end of the program (not just the end of the
script.) Why is this? If you have read the 'advanced concepts' chapter, you know that all
of the functions in a jseInterpret() stick around in the global object, even after the
jseInterpret() call itself is finished. This is why you can 'load' functions using
jseInterpret() and later call them. Whatever security they had when they were created isn't
forgotten.

All functions remember the security in effect when they were created, and that applies if
they are again called later. So, the security termination function isn't actually called until
all of the functions have gone away, which happens at the end of the program when the
ScriptEase engine cleans up everything.

jseSecurityGuard
Usually it is enough to specify which functions you want to allow to be called in the
jseSecurityInit function and leave it at that. There can be cases in which you want to
allow a function to be called with certain parameters but reject it with others. For
instance, you may want to limit creating sockets to certain ports or limit opening files to
certain filenames. You specify 'jseSecureGuard' for the setSecurity() options for these
functions, and before they can be called, your jseSecurityGuard function will first be
called to validate this call.

240 ScriptEase:ISDK/C

Here is an example:

function jseSecurityGuard(security_var,func,filename)
{

if(func==Clib.fopen)
{

/* get the full path so the user can't trick
us with

* something like:
'c:\\temp\\..\\windows\\win.ini'

*/
var actualname = SElib.fullpath(filename);

/* We only want to allow files in this
directory to be opened. */

return
Clib.strnicmp("c:\\temp\\",actualname,8)==0;

}
else
{

return false;
}

}

This function, like the other two, gets the security variable as its first parameter. Again,
we will describe that shortly. The second parameter is the actual function being called. In
this example, we compare it to 'Clib.fopen' so that we can validate a call to 'Clib.fopen()'.
The security guard function must return 'true' to allow the call, 'false' to disallow it. In this
case, we return false if it is not Clib.fopen. Presumably, we only label Clib.fopen as
'jseSecureGuard', so only Clib.fopen will be using this guard function.

We include the else clause because it is always a good idea to cover all bases. If it is
something we don't expect, we just say no. This is good programming practice in general;
if the parameters aren't what you expect, even if you think it is impossible for them not to
be, still do something sensible even if that turns out not to be the case.

Notice that this function has a third parameter, 'filename'. All of the parameters that are
being passed to the called function are also passed to the security guard function after the
two parameters it always gets. The first parameter to the called function is the third to
security guard, the second we receive as our fourth, and so on. This allows us to examine
the parameters the function will get when deciding if we want to allow the call. In fact,
there would be little point in not examining the parameters. If we are always going to
reject or accept a particular call regardless of the parameters, we can instead just set that
up in the 'jseSecurityInit' function.

 Perceptive readers will note that Clib.fopen actually takes two parameters, but we have
only named one of them. In Javascript, you can pass extra parameters to script functions,

Security 241

more than are named in the parameter list. These parameters are still there and can be
accessed using the 'arguments' array. In this case, 'filename' is the same as 'arguments[2]',
and we could have referred to it that way. The file mode parameter to Clib.fopen() will
also be passed to us. We can refer to it as 'arguments[3]', or we can name it in the
parameter list if we need to check it as well.

This example checks the name and only allows file access in the 'C:\temp\' directory. We
could limit it in any way we choose, this is just one possibility.

securityVariable
We mentioned above that each function gets a security variable passed to it. Each
security manager has a single variable associated with it. You can specify this when you
specify your security functions (see below for specifying security). Alternately, if you
don't, a blank ScriptEase object is created (as if calling 'new Object()') and used. This
variable cannot be accessed by the script being run, but it is passed to each security
function whenever it is called. This allows you to store data needed to implement your
security and keep it safe from the script being run.

Specifying Security
The ScriptEase API call jseInterpret() has among its settings 'jseNewSecurity.' If you turn
this on, then the script being run will have security applied to it. If you leave it off, no
security applies and all functions can be called. The four security items we just finished
discussing correspond to the four fields of the jseExternalLinkParameters structure of the
same name. Before you interpret the script, you use jseGetExternalLinkParameters() to
get the parameters structure, fill in these fields, then call jseInterpret() with the
jseNewSecurity flag turned on. You must fill in the 'jseSecurityInit' function. If you do
not, the 'jseNewSecurity' flag will be ignored.

Since the parameters are jseVariables, you set them to any function you like. You can use
jseCreateWrapperFunction() to create a wrapper function to do the security tasks. In the
example above, we used script examples. ScriptEase Desktop implements security this
way. The three functions are put in a script. You tell ScriptEase Desktop the name of the
script using the command line parameter '/secure=<security script name>'. ScriptEase
Desktop interprets that script first, picks out the security functions, and uses them when it
interprets the script you are really interested in. The functions in the security script must
be given the names we described above.

When you interpret a script from within a script, using SElib.interpret(), you can also
specify the security for that child script. See the manual description of SElib.interpret()
for details on how you do this.

242 ScriptEase:ISDK/C

Wrapper Functions And Security
Wrapper functions are insecure because they are labelled that way. When you write your
own wrapper functions and add them using jseAddLibrary(), you get to label them as
either secure or insecure. Remember, if there is any possible way the function could be
misused, make it insecure. If you are in doubt about whether a particular function should
be labelled secure or insecure, choose insecure.

When you are writing a wrapper function, it is possible for it to use jseCallFunction() or
jseInterpret() to execute more code. These calls are affected by security. This allows
security to propogate. For instance, the ECMAScript function 'eval()' executes a text
string as script code exactly like the text string appeared directly in the script. In this case,
the wrapper acts just as a passthrough, and the code it executes should follow all of the
standard security rules. In fact, the ECMA eval() function itself is secure; whatever text it
executes has the same security as what was already executing. ScriptEase uses this model
when you use these two API calls. As a result, the following behavior applies:

When calling a function using jseCallFunction(), the call is treated as if the wrapper
function's caller was making the call. This means that the calling script function will need
to get approval to call the new function. Typically, a wrapper function that just turns
around and uses jseCallFunction() is itself secure.

jseInterpret() has different behavior depending on the wrapper function itself. If the
wrapper function is insecure, then the script run with jseInterpret() starts with no security.
If the wrapper function is secure, then jseInterpret() starts with the same security as the
calling function.

So, for instance, ECMA eval() is secure as we already mentioned. Thus, when it runs a
new script, that script has the existing security restrictions still on it. If the function was
labelled insecure, then it has already passed a security check to be able to call it, and it
can continue to do dangerous things, so any scripts it interprets are likewise at this high
level of security. jseInterpret() allows security to be added using the 'jseNewSecurity'
flag. This is on top of whatever security it already has as specified above.

Security 243

Sample Script
Here is a sample ScriptEase Desktop security script. If you use it, then the desktop scripts
will not be allowed to use any insecure functions except a few file-related ones. In
addition, Clib.fopen will only be allowed to open files in the 'C:\temp\' directory.

function jseSecurityInit(security_var)
{

/* allow basic file manipulations, but nothing fancy,
and

* make sure to examine all open calls very carefully.
*/
Clib.fopen.setSecurity(jseSecureGuard);
Clib.fclose.setSecurity(jseSecureAllow);
Clib.fprintf.setSecurity(jseSecureAllow);
Clib.fread.setSecurity(jseSecureAllow);
Clib.fwrite.setSecurity(jseSecureAllow);

}

function jseSecurityGuard(security_var,func,filename)
{

/* we only guard the fopen call, so this should be it
*/

Clib.assert(security_var==Clib.fopen);

/* get the full path so the user can't trick us with
something

* like: 'c:\\temp\\..\\windows\\win.ini'
*/
var actualname = SElib.fullpath(filename);

/* We only want to allow files in this directory to
be opened. */

return Clib.strnicmp("c:\\temp\\",actualname,8)==0;
}

244 ScriptEase:ISDK/C

Language Objects & Libraries 245

Language Objects & Libraries

ScriptEase Global Functions
The global functions described in this section are unique to the ScriptEase
implementation of JavaScript. In other words, they are not part of the ECMAScript
standard, but they are useful. Avoid using these functions in a script if it will be used with
a JavaScript interpreter that does not support these unique functions.

Like other global items these functions are actually methods of the global Object and can
be called with function or method notation. The two following lines of code are
equivalent.
 var aString = ToString(123)
 var aString = global.ToString(123)

General
defined(value)
This function tests whether a variable, Object property, or value has been defined. The
function returns true if a value has been defined, or else returns false. The function
defined() may be used during script execution and during preprocessing. When used in
preprocessing with the directive #if, the function defined() is similar to the directive
#ifdef, but is more powerful. The following fragment illustrates three uses of
defined().
 var t = 1;
 #if defined(_WIN32_)

 Screen.writeln("in Win32");
 if (defined(t))

 Screen.writeln("t is defined");
 if (!defined(t.t))

Screen.writeln("t.t is not defined");
 #endif
The first use of defined() checks a value available to the preprocessor to determine
which platform is running the script. The second use checks a variable "t". The third use
checks an object "t.t"

246 ScriptEase:ISDK/C

getArrayLength(array[, MinIndex])
This function should be used with dynamically created arrays, that is, with arrays that
were not created using the Array() constructor and new operator. When working with
arrays created using the Array() constructor and new operator, use the .length property of
the arrays. The .length property is not available for dynamically created arrays which
must use the functions, getArrayLength() and setArrayLength(), when working with array
lengths.

The getArrayLength() function returns the length of a dynamic array, which is one more
than the highest index of an array, if the first element of the array is at index 0, which is
most common. If the parameter MinIndex is passed, then it is used to set to the minimum
index, which will be zero or less. You can use this function to get the length of an array
that was not created with the Array() constructor function.

This function and its counterpart, setArrayLength(), are intended for use with
dynamically created arrays, that is, arrays not created with the Array() constructor
function. Use the .length property to get the length of arrays created with the constructor
function and not getArrayLength().

getAttributes(variable)
This function gets and returns the variable attributes for the parameter variable. Variable
attributes may be set using the function setAttributes(). See setAttributes() for more
information and descriptions of the attributes of variables that can be set.

setArrayLength(array[, MinIndex], length])
This function sets the first index and length of an array. Any elements outside the bounds
set by MinIndex and length are lost, that is, become undefined. If only two arguments are
passed to setArrayLength(), the second argument is length and the minimum index of the
newly sized array is 0. If three arguments are passed to setArrayLength(), the second
argument, which must be 0 or less, is the minimum index of the newly sized array, and
the third argument is the length.

setAttributes(variable, attributes)
This function sets the variable attributes for the parameter variable using the parameter
attributes. Variables in ScriptEase may have various attributes set that affect the behavior
of variables. This function has no return.

The following list describes the attributes that may be set for variables. Multiple
attributes may be set for variables by combining them with the or operator. For example,
the flag setting READ_ONLY | DONT_ENUM sets both of these attributes for one variable.

Language Objects & Libraries 247

DONT_DELETE This variable may not be deleted. If the delete operator
is used with a variable, nothing is done.

DONT_ENUM This variable is not enumerated when using a for/in
loop.

IMPLICIT_PARENTS This attribute applies only to local functions and allows
a scope chain to be altered based on the __parent__
property of the "this" variable. If this flag is set, if the
__parent__ property is present, and if a variable is not
found in the local variable context, activation object, of
a function, then the parents of the "this" variable are
searched backwards before searching the global object.
The example below illustrates the effect of this flag.

IMPLICIT_THIS This attribute applies only to local functions. If this
flag is set, then the "this" variable is inserted into a
scope chain before the activation object. For example,
if variable TestVar is not found in a local variable
context, activation object, the interpreter searches the
current "this" variable of a function.

READ_ONLY This variable is read-only. Any attempt to write to or
change this variable fails.

The following fragment illustrates the use of setAttributes() and the behavior affected by
the IMPLICIT_PARENTS flag.
 function foo()
 {
 value = 5;
 }
 setAttributes(foo, IMPLICIT_PARENTS)

 var a;
 a.value = 4;
 var b;
 b.__parent__ = a;
 b.foo = foo;
 b.foo();
After this code is run, a.value is set to 5.

undefine(value)
This function undefines a variable, Object property, or value. If a value was previously
defined so that its use with the function defined() returns true, then after using
undefine() with the value, defined() returns false. Undefining a value is different than
setting a value to null.

248 ScriptEase:ISDK/C

In the following fragment, the variable n is defined with the number value of 2, and then
undefined.
 var n = 2;
 undefine(n);
In the following fragment an object o is created and a property o.one is defined. The
property is then undefined but the object o remains defined.
 var o = new Object;
 o.one = 1;
 undefine(o.one);

Conversion or casting
Though ScriptEase does well in automatic data conversion, there are times when the
types of variables or data must be specified and controlled. Each of the following casting
functions has one parameter, which is a variable or piece of data, to be converted to or
cast as the data type specified in the name of the function. For example, the following
fragment creates two variables.
 var aString = ToString(123);
 var aNumber = ToNumber("123");
The first variable aString is created as a string from the number 123 converted to or cast
as a string. The second variable aNumber is created as a number from the string "123"
converted to or cast as a number. Since aString had already been created with the value
"123", the second line could also have been:
 var aNumber = ToNumber(aString);

The type of the variable or piece of data passed as a parameter affects the returns of some
of the functions.

ToBoolean(value)
The following table lists how different data types are converted by this function.

Data type Return

Boolean same as value
Buffer same as for String
null false
Number false if value is 0, +0, -0 or NaN, else true
Object true
String false if empty string, "", else true
undefined false

ToBuffer(value)
This function converts value to a buffer in a manner similar to ToString() except that the
resulting array of characters is a sequence of ASCII bytes and not a unicode string.

ToBytes(value)

Language Objects & Libraries 249

This function converts value to a buffer and differs from ToBuffer() in that the
conversion is actually a raw transfer of data to a buffer. The raw transfer does not convert
unicode values to corresponding ASCII values. For example, the unicode string "Hit"
may be stored in a buffer as "\0H\0\i\0t", that is, as the hexadecimal sequence: 00 48 00
69 00 74.

ToInt32(value)
This function is the same as ToInteger() except that if the return is an integer, it is in the
range of -231 through 231 - 1.

ToInteger(value)
This function converts value to an integer type. First, call ToNumber(). If result is NaN,
return +0. If result is +0, -0, +Infinity or -Infinity, return result. Else return
floor(abs(result)) with the appropriate sign. For example, the value -4.8 is converted to -
4.

ToNumber(value)
The following table lists how different data types are converted by this function.

Data type Return

Boolean +0, if value is false, else 1

Buffer same as for String
null 0

Number same as value

Object first, call ToPrimitive(), then call ToNumber() and
return result

String number, if successful, else NaN

undefined NaN

ToObject(value)
The following table lists how different data types are converted by this function.

Data type Return

Boolean new Boolean object with value
null generate runtime error
Number new Number object with value
Object same as parameter
String new String object with value
undefined generate runtime error

250 ScriptEase:ISDK/C

ToPrimitive(value)
This function does conversions only for parameters of type Object. An internal default
value of the Object is returned.

ToString(value)
The following table lists how different data types are converted by this function.

Data type Return

Boolean "false", if value is false, else "true"
null "null"
Number if value is NaN, return "NaN". If +0 or -0, return "0". If

Infinity, return "Infinity". If a number, return a string
representing the number. If a number is negative, return
"-" concatenated with the string representation of the
number.

Object first, call ToPrimitive(), then call ToString() and return
result

String same as value
undefined "undefined"

ToUint16(value)
This function is the same as ToInteger() except that if the return is an integer, it is in the
range of 0 through 216 - 1.

ToUint32(value)
This function is the same as ToInteger() except that if the return is an integer, it is in the
range of 232 - 1.

The Buffer Object
The Buffer object provides a way to manipulate data at a very basic level. It is needed
whenever the relative location of data in memory is important. Any type of data may be
stored in a buffer object. A new Buffer object may be created from scratch or from a
string, buffer, or Buffer object, in which case the contents of the string or buffer will be
copied into the newly created Buffer object. To create a Buffer object, follow the syntax
below.
 new Buffer([size] [, unicode] [, bigEndian]);
A line of code following this syntax creates a new buffer object. If size is specified, then
the new buffer is created with the specified size, filled with NULL bytes. If no size is
specified, then the buffer is created with a size of 0, though it can be extended
dynamically later. The unicode parameter is an optional boolean flag describing the

Language Objects & Libraries 251

initial state of the .unicode flag of the object. Similarly, bigEndian describes the initial
state of the bigEndian parameter of the buffer. If unspecified, these parameters default to
the values described below.
 new Buffer(string [, unicode] [, bigEndian]);
A line of code following this syntax creates a new buffer object from the string provided.
If string is a unicode string (unicode is enabled within the application), then the buffer is
created as a unicode string. This behavior can be overridden by specifying true or
false with the optional boolean unicode parameter. If this parameter is set to false,
then the buffer is created as an ASCII string, regardless of whether or not the original
string was in unicode or not. Similarly, specifying true will ensure that the buffer is
created as a unicode string. The size of the buffer is the length of the string (twice the
length if it is unicode). This constructor does not add a terminating NULL byte at the end
of the string. The bigEndian flag behaves the same way as in the first constructor.
 new Buffer(buffer [, unicode] [, bigEndian]);
A line of code following this syntax creates a new buffer object from the buffer provided.
The contents of the buffer are copied as-is into the new buffer object. The unicode and
bigEndian parameters do not affect this conversion, though they do set the relevant flags
for future use.
 new Buffer(bufferObject);
A line of code following this syntax creates a new buffer object from another buffer
object. Everything is duplicated exactly from the other bufferObject, including the cursor
location, size, and data.

All of the above calls have an equivalent call form (such as "Buffer(15)"), except that this
simply returns the buffer part (equivalent to the data member), rather than the entire
Buffer object.

Buffer Object Properties
.size
The size of the Buffer object. This property may be assigned to, such as "foo.size = 5". If
a user changes the size of the buffer to something larger, then it is filled with NULL
bytes. If the user sets the size to a value smaller than the current position of the cursor,
then the cursor is moved to the end of the new buffer.

.cursor
The current position within a buffer. This value is always between 0 and .size. It can be
assigned to as well. If a user attempts to move the cursor beyond the end of a buffer, than
the buffer is extended to accommodate the new position, and filled with NULL bytes. If a
user attempts to set the cursor to less than 0, then it is set to the beginning of the buffer, to
position 0.

.unicode

252 ScriptEase:ISDK/C

This property is a boolean flag specifying whether to use unicode strings when calling
.getString() and .putString(). This value is set when the buffer is created, but may be
changed at any time. This property defaults to the unicode status of the underlying
ScriptEase engine.

.bigEndian
This property is a boolean flag specifying whether to use bigEndian byte ordering when
calling .getValue() and .putValue(). This value is set when a buffer is created, but may be
changed at any time. This property defaults to the state of the underlying OS and
processor.

.data
This property is a reference to the internal data of a buffer. It is only a temporary value to
assist in passing parameters to OS and system-library type calls. In the future, all
ScriptEase library functions should be able to recognize Buffer objects and to get this
member on their own.

Buffer Object Methods
.putValue(value [, valueSize] [, valueType])
This method puts the specified value into a buffer. The value must be a number.
ValueSize or both valueSize and valueType may be passed as additional parameters.
ValueSize is a positive number describing the number of bytes to be used and defaults to
1. Acceptable values for valueSize are 1,2,3,4,8, and 10, providing that it does not
conflict with the optional valueType flag. (See listing below.)

The parameter valueType must be one of the following: "signed", "unsigned", or "float".
It defaults to "signed." The valueType parameter describes the type of data to be read.
Combined with valueSize, any type of data can be put. The following list describes the
acceptable combinations of valueSize and valueType:

valueSize valueType
1 signed, unsigned
2 signed, unsigned
3 signed, unsigned
4 signed, unsigned, float
8 float
10 float (Not supported on every system)

Any other combination will cause an error. The value is put into the buffer at the current
cursor position, and the cursor value is automatically incremented by the size of the value
to reflect this addition. To explicitly put a value at a specific location while preserving the
cursor location, do something similar to the following.
 var oldCursor = foo.cursor; // Save the old cursor location
 foo.cursor = 20; // Set to new location

Language Objects & Libraries 253

 foo.putValue(goo); // Put goo at offset 20
 foo.cursor = oldCursor // Restore cursor location
The value is put into the buffer with byte-ordering according to the current setting of the
.bigEndian flag. Note that when putting float values as a smaller size, such as 4, some
significant figures are lost. A value such as "1.4" will actually be converted to something
to the effect of "1.39999974". This is sufficiently insignificant to ignore, but note that the
following does not hold true:
foo.putValue(1.4,4,"float");
 foo.cursor -= 4;
 if(foo.getValue(4,"float") != 1.4)
 // This is not necessarily true due to sig. dig. loss.
This situation can be prevented by using 8 or 10 as a valueSize instead of 4. A valueSize
of 4 may still be used for floating point values, but be aware that some loss of significant
figures may occur (though it may not be enough to affect most calculations).

.getValue([valueSize] [, valueType])
This method returns a value from the specified position in a buffer object. This call is
similar to the putValue() function, except that it gets a value instead of puts a value.

.putString(string)
This method puts a string into the buffer object at the current cursor position. If the
.unicode flag is set within the Buffer object, then the string is put as a unicode string,
otherwise it is put as an ASCII string. The cursor is incremented by the length of the
string (or twice the length if it is put as a unicode string). Note that terminating NULL
byte is not added at end of the string. To put a NULL terminated string, the following can
be done.
 foo. putString("Hello"); // Put the string into the buffer
 foo.putValue(0); // Add terminating NULL byte
.getString([length])
This method returns a string starting from the current cursor location and continuing for
length bytes. If no length is specified, then the method reads until a NULL byte is
encountered or the end of the buffer is reached. The string is read according to the value
of the .unicode flag of the buffer. A terminating NULL byte is not added, even if a length
parameter is not provided.

.toString()
This method returns a string equivalent of the current state of the buffer. Any conversion
to or from unicode is done according to the .unicode flag of the object.

.subBuffer(beginning, end);
This method returns another Buffer object consisting of the data between the positions
specified by the parameters: beginning and end. If the parameter beginning is less than 0,
then it is treated as 0, the start of the buffer. If the parameter end is beyond the end of the
buffer, then the new sub-buffer is extended with NULL bytes, but the original buffer is

254 ScriptEase:ISDK/C

not altered. The .unicode and .bigEndian flags are duplicated in the new buffer. The size
of the new buffer is set to the beginning and end parameters. If the cursor in the old
buffer is between beginning and end, then it is converted to a new relative position in the
new buffer. If the cursor was before beginning, then it is set to 0 in the new buffer, and if
it was past end, then it is set to the end of the new buffer.

Buffer[offset]
This is an array-like version of the .getValue()/.putValue() methods which works only
with bytes. A user may either get or set these values, such as "goo = foo[5];" or
"foo[5] = goo;". Every get/put operation uses byte types, that is, SWORD8. If offset
is less than 0, then 0 is used. If offset is beyond the end of a buffer, the size of the buffer
is extended with NULL bytes to accommodate it.

The Date Object
ScriptEase shines in its ability to work with dates and provides two different systems for
working with them. One is the standard Date object of JavaScript and the other is part of
the Clib object which implements powerful routines from C. Two methods,
Date.fromSystem() and .toSystem(), convert dates in the format of one system to
the format of the other. The standard JavaScript Date object is described in this section.

To create a Date object which is set to the current date and time, use the new operator, as
you would with any object.
 var currentDate = new Date();
There are several ways to create a Date object that is set to a date and time. The
following lines all demonstrate ways to get and set dates and times.
 var aDate = new Date(milliseconds);
 var bDate = new Date(datestring);
 var cDate = new Date(year, month, day);
 var dDate = new Date(year, month, day, hours, minutes, seconds);
The first syntax returns a date and time represented by the number of milliseconds since
midnight, January 1, 1970. This representation by milliseconds is a standard way of
representing dates and times that makes it easy to calculate the amount of time between
one date and another. Generally, you do not create dates in this way. Instead, you convert
them to milliseconds format before doing calculations.

The second syntax accepts a string representing a date and optional time. The format of
such contains one or more of the following fields, in any order:
 month day, year hours:minutes:seconds
For example, the following string:
 "Friday 13, 1995 13:13:15"
specifies the date, Friday 13, 1995, and the time, one thirteen and 15 seconds PM, which,
expressed in 24 hour time, is 13:13 hours and 15 seconds. The time specification is
optional and if included, the seconds specification is optional.

Language Objects & Libraries 255

The third and fourth syntaxes are self-explanatory. All parameters passed to them are
integers.

year If a year is in the twentieth century, the 1900s, you need only
supply the final two digits. Otherwise four digits must be
supplied.

month A month is specified as a number from 0 to 11. January is 0,
and December is 11.

day A day of the month is specified as a number from 1 to 31.
The first day of a month is 1 and the last is 28, 29, 30, or 31.

hours An hour is specified as a number from 0 to 23. Midnight is 0,
and 11 PM is 23.

minutes A minute is specified as a number from 0 to 59. The first
minute of an hour is 0, and the last is 59.

seconds A second is specified as a number from 0 to 59. The first
second of a minute is 0, and the last is 59.

For example, the following line of code:
 var aDate = new Date(1492, 9, 12)
creates a Date object containing the date, October 12, 1492.
The following is a brief description of the methods of the Date object. Instance methods
are shown with a period, ".", at their beginnings. A specific instance of a variable should
be put in front of the period to call a method.
For example, the Date object aDate was created above, and, to call the .getDate()
method, the call would be: aDate.getDate(). Static methods have "Date." at their
beginnings, since these methods are called with a literal call, such as Date.parse().
These methods are part of the Date object itself instead of instances of the Date object.

Instance Date methods
.getDate()
This method returns the day of the month, as a number from 1 to 31, of a Date object.
The first day of a month is 1, and the last is 28, 29, 30, or 31.

.getDay()
This method returns the day of the week, as a number from 0 to 6, of a Date object.
Sunday is 0, and Saturday is 6.

.getFullYear()
This method returns the year, as a number with four digits, of a Date object.

256 ScriptEase:ISDK/C

.getHours()
This method returns the hour, as a number from 0 to 23, of a Date object. Midnight is 0,
and 11 PM is 23.

.getMilliseconds()
This method returns the millisecond, as a number from 0 to 999, of a Date object. The
first millisecond in a second is 0, and the last is 999.

.getMinutes()
This method returns the minute, as a number from 0 to 59, of a Date object. The first
minute of an hour is 0, and the last is 59.

.getMonth()
This method returns the month, as a number from 0 to 11, of a Date object. January is 0,
and December is 11.

.getSeconds()
This method returns the second, as number from 0 to 59, of a Date object. The first
second of a minute is 0, and the last is 59.

.getTime()
This method returns the milliseconds representation of a Date object, in the form of an
integer representing the number of seconds from midnight on January 1, 1970, GMT, to
the date and time specified by a Date object.

.getTimezoneOffset()
This method returns the difference, in minutes, between Greenwich Mean Time (GMT)
and local time.

.getUTCDate()
This method returns the UTC day of the month, as a number from 1 to 31, of a Date
object. The first day of a month is 1, and the last is 28, 29, 30, or 31.

.getUTCDay()
This method returns the UTC day of the week, as a number from 0 to 6, of a Date object.
Sunday is 0, and Saturday is 6.

.getUTCFullYear()
This method returns the UTC year, as a number with four digits, of a Date object.

.getUTCHours()
This method returns the UTC hour, as a number from 0 to 23, of a Date object. Midnight
is 0, and 11 PM is 23.

Language Objects & Libraries 257

.getUTCMilliseconds()
This method returns the UTC millisecond, as a number from 0 to 999, of a Date object.
The first millisecond in a second is 0, and the last is 999.

.getUTCMinutes()
This method returns the UTC minute, as a number from 0 to 59, of a Date object. The
first minute of an hour is 0, and the last is 59.

.getUTCMonth()
This method returns the UTC month, as a number from 0 to 11, of a Date object.
January is 0, and December is 11.

.getUTCSeconds()
This method returns the UTC second, as number from 0 to 59, of a Date object. The first
second of a minute is 0, and the last is 59.

.getYear()
This method returns the year, as a number with two digits, of a Date object.

.setDate(DayOfMonth)
This method sets the day, as a number from 1 to 31, of a Date object to the parameter
DayOfMonth. The first day of a month is 1, and the last is 28, 29, 30, or 31.

.setFullYear(year[, month[, date]])
This method sets the year of a Date object to the parameter year. The parameter year is
expressed with four digits.

If the parameter month is passed, use data format for .setMonth().

If the parameter date is passed, use data format for .setDate().

.setHours(hour[, minute[, second[, millisecond]]])
This method sets the hour, as a number from 0 to 23, of a Date object to the parameter
hours. Midnight is 0, and 11 PM is 23.

If the parameter minute is passed, use data format for .setMinutes().

If the parameter second is passed, use data format for .setSeconds().

If the parameter millisecond is passed, use data format for .setMilliseconds().

.setMilliseconds(millisecond)
This method sets the millisecond, as a number from 0 to 59, of a Date object to the
parameter millisecond. The first millisecond in a second is 0, and the last is 999.

.setMinutes(minute[, second[, millisecond]])

258 ScriptEase:ISDK/C

This method sets the minute, as a number from 0 to 59, of a Date object to the parameter
minute. The first minute of an hour is 0, and the last is 59.

If the parameter second is passed, use data format for .setSeconds().

If the parameter millisecond is passed, use data format for .setMilliseconds().

.setMonth(month[, date])
This method sets the month, as a number from 0 to 11, of a Date object to the parameter
month. January is 0, and December is 11.

If the parameter date is passed, use data format for .setDate().

.setSeconds(second[, millisecond])
This method sets the second, as a number from 0 to 59, of a Date object to the parameter
second. The first second of a minute is 0, and the last is 59.

If the parameter millisecond is passed, use data format for .setMilliseconds().

.setTime(milliseconds)
This method sets a Date object to the date and time specified by the parameter
milliseconds which is the number of milliseconds from midnight on January 1, 1970,
GMT.

.setUTCDate(DayOfMonth)
This method sets the UTC day, as a number from 1 to 31, of a Date object to the
parameter DayOfMonth. The first day of a month is 1, and the last is 28, 29, 30, or 31.

.setUTCFullYear(year[, month[, date]])
This method sets the UTC year of a Date object to the parameter year. The parameter
year is expressed with four digits.

If the parameter month is passed, use data format for .setUTCMonth().

If the parameter date is passed, use data format for .setUTCDate().

.setUTCHours(hour[, minute[, second[, millisecond]]])
This method sets the UTC hour, as a number from 0 to 23, of a Date object to the
parameter hours. Midnight is 0, and 11 PM is 23.

If the parameter minute is passed, use data format for .setUTCMinutes().

If the parameter second is passed, use data format for .setUTCSeconds().

If the parameter millisecond is passed, use data format for
.setUTCMilliseconds().

.setUTCMilliseconds(millisecond)
This method sets the UTC millisecond, as a number from 0 to 59, of a Date object to the
parameter millisecond. The first millisecond in a second is 0, and the last is 999.

Language Objects & Libraries 259

.setUTCMinutes(minute[, second[, millisecond]])
This method sets the UTC minute, as a number from 0 to 59, of a Date object to the
parameter minute. The first minute of an hour is 0, and the last is 59.

If the parameter second is passed, use data format for .setUTCSeconds().

If the parameter millisecond is passed, use data format for
.setUTCMilliseconds().

.setUTCMonth(month[, date])
This method sets the UTC month, as a number from 0 to 11, of a Date object to the
parameter month. January is 0, and December is 11.

If the parameter date is passed, use data format for .setUTCDate().

.setUTCSeconds(second[, millisecond]])
This method sets the UTC second, as a number from 0 to 59, of a Date object to the
parameter second. The first second of a minute is 0, and the last is 59.

If the parameter millisecond is passed, use data format for .setUTCMilliseconds().

.setYear(year)
This method sets the year of a Date object to the parameter year. The parameter year
may be expressed with two digits for a year in the twentieth century, the 1900s. Four
digits are necessary for any other century.

.toGMTString()
This method converts a Date object to a string, based on Greenwich Mean Time.

.toLocaleString()
This method returns a string representing the date and time of a Date object based on the
time zone of the user.

.toSystem()
This method converts a Date object to a system time format which is the same as that
returned by the Clib.time() method. To create a Date object from a variable in system
time format, see the Date.fromSystem() method.

.toUTCString()
This method returns a string that represents the UTC date in a convenient and
human-readable form.

Static Date methods
The Date object has three special methods that are called from the object itself, rather
than from an instance of it: Date.fromSystem(), Date.parse(), and Date.UTC().

260 ScriptEase:ISDK/C

Date.fromSystem(time)
This method converts the parameter time, which is in the same format as returned by the
Clib.time(), to a standard JavaScript Date object. To create a Date object from
date information obtained using Clib, use code similar to:
 var SysDate = Clib.time();
 var ObjDate = Date.fromSystem(SysDate);
To convert a Date object to system format that can be used by the methods of the Clib
object, use code similar to:
 var SysDate = ObjDate.toSystem();
Date.parse(datestring)
This method converts the string datestring to a Date object. The string must be in the
following format:
 Friday, October 31, 1998 15:30:00 -0500
This format is used by the .toGMTString() method and by email and Internet
applications. The day of the week, time zone, time specification or seconds field may be
omitted.
 var theDate = Date.parse(datestring);
is equivalent to:
 var theDate = new Date(datestring);
Date.UTC(year, month, day, [, hours [,minutes [,seconds]]])
This method interprets its parameters as a date and returns the number of milliseconds
from midnight, January 1, 1970, to the date and time specified. The parameters are
interpreted as referring to Greenwich Mean Time (GMT).

The Math Object
The Math object in ScriptEase has a full and powerful set of methods and properties for
mathematical operations. A programmer has a rich set of mathematical tools for the task
of doing mathematical calculations in a script.

Properties
Math.E
The number value for e, the base of natural logarithms. This value is represented
internally as approximately 2.7182818284590452354.

Math.LN10
The number value for the natural logarithm of 10. This value is represented internally as
approximately 2.302585092994046.

Math.LN2

Language Objects & Libraries 261

The number value for the natural logarithm of 2. This value is represented internally as
approximately 0.6931471805599453.

Math.LOG2E
The number value for the base 2 logarithm of e, the base of the natural logarithms. This
value is represented internally as approximately 1.4426950408889634. The value of
Math.LOG2E is approximately the reciprocal of the value of Math.LN2.

Math.LOG10E
The number value for the base 10 logarithm of e, the base of the natural logarithms. This
value is represented internally as approximately 0.4342944819032518. The value of
Math.LOG10E is approximately the reciprocal of the value of Math.LN10.

Math.PI
The number value for pi, the ratio of the circumference of a circle to its diameter. This
value is represented internally as approximately 3.14159265358979323846.

Math.SQRT1_2
The number value for the square root of 2, which is represented internally as
approximately 0.7071067811865476. The value of Math.SQRT1_2 is approximately the
reciprocal of the value of Math.SQRT2.

Math.SQRT2
The number value for the square root of 2, which is represented internally as
approximately 1.4142135623730951.

Methods
Math.abs(x)
Returns the absolute value of x. Returns NaN if x cannot be converted to a number.

Math.acos(x)
Returns the arc cosine of x. The return value is expressed in radians and ranges from 0 to
pi. Returns NaN if x cannot be converted to a number, is greater than 1, or is less than -1.

Math.asin(x)
Returns an implementation-dependent approximation of the arc sine of the argument. The
return value is expressed in radians and ranges from -pi/2 to +pi/2. Returns NaN if x
cannot be converted to a number, is greater than 1, or less than -1.

Math.atan(x)
Returns an implementation-dependent approximation of the arc tangent of the argument.
The return value is expressed in radians and ranges from -pi/2 to +pi/2.

262 ScriptEase:ISDK/C

Math.atan2(x, y)
Returns an implementation-dependent approximation to the arc tangent of the quotient,
y/x, of the arguments y and x, where the signs of the arguments are used to determine the
quadrant of the result. It is intentional and traditional for the two-argument arc tangent
function that the argument named y be first and the argument named x be second. The
return value is expressed in radians and ranges from -pi to +pi.

Math.ceil(x)
Returns the smallest number that is not less than the argument and is equal to a
mathematical integer. If the argument is already an integer, the result is the argument
itself. Returns NaN if x cannot be converted to a number.

Math.cos(x)
Returns an implementation-dependent approximation of the cosine of the argument. The
argument is expressed in radians. Returns NaN if x cannot be converted to a number.

Math.exp(x)
Returns an implementation-dependent approximation of the exponential function of the
argument, that is, returns e raised to the power of the x, where e is the base of the natural
logarithms. Returns NaN if x cannot be converted to a number.

Math.floor(x)
Returns the greatest number value that is not greater than the argument and is equal to a
mathematical integer. If the argument is already an integer, the return value is the
argument itself.

Math.log(x)
Returns an implementation-dependent approximation of the natural logarithm of x.

Math.max(x, y)
Returns the larger of x and y. Returns NaN if either argument cannot be converted to a
number.

Math.min(x, y)
Returns the smaller of x and y. Returns NaN if either argument cannot be converted to a
number.

Math.pow(x, y)
Returns the value of x to the power of y.

Math.random()
Returns a number which is positive and pseudo-random and which is greater than or
equal to 0 but less than 1. This method takes no arguments.

Math.round(x)

Language Objects & Libraries 263

Returns the number value that is closest to the argument and is equal to a mathematical
integer. x is rounded up if its fractional part is equal to or greater than 0.5 and is rounded
down if less than 0.5.

Math.sin(x)
Returns the sine of x, expressed in radians. Returns NaN if x cannot be converted to a
number.

Math.sqrt(x)
Returns the square root of x. Returns NaN if x is a negative number or cannot be
converted to a number.

Math.tan(x)
Returns the tangent of x, expressed in radians. Returns NaN if x cannot be converted to a
number.

The String Hybrid
The String data type is a hybrid that shares characteristics of primitive data types,
Boolean and Number, and of composite data types, Object and Array. The String is
presented in this section under two main headings in which the first describes its
characteristics as a primitive data type and the second describes its characteristics as an
object.

The String as data type
A string is an ordered series of characters. The most common use for strings is to
represent text. To indicate that text is a string, it is enclosed in quotation marks. For
example, the first statement below puts the string "hello" into the variable word. The
second sets the variable word to have the same value as a previous variable hello:
 var word = "hello";
 word = hello;

Escape sequences for characters
Some characters, such as a quotation mark, have special meaning to the interpreter and
must be indicated with special character combinations when used in strings. This allows
the interpreter to distinguish between a quotation mark that is part of a string and a
quotation mark that indicates the end of the string.

264 ScriptEase:ISDK/C

The table below lists the characters indicated by escape sequences:

\a Audible bell
\b Backspace
\f Formfeed
\n Newline
\r Carriage return
\t Tab
\v Vertical tab
\' Single quote
\" Double quote
\\ Backslash character
\0### Octal number (example: '\033' is the escape character)
\x## Hex number (example: '\x1B' is the escape character)
\0 NULL character (example: '\0' is the NULL character)
\u#### Unicode number (example: '\u001B' is the escape character)

Note that these escape sequences cannot be used within strings enclosed by back quotes,
which are explained below.

Single quote strings
You can declare a string with single quotes instead of double quotes. There is no
difference between the two in JavaScript, except that double quote strings are used less
commonly by many scripters. In functions declared with the cfunction keyword, the
difference is more important. For more information, see the section on cfunction.

Back quote strings
ScriptEase provides the back quote "`", also known as the back-tick or grave accent, as an
alternative quote character to indicate that escape sequences are not to be translated. Any
special characters represented with a backslash followed by a letter, such as "\n", cannot
be used in back tick strings.
For example, the following lines show different ways to describe a single file name:
 "c:\\autoexec.bat" // traditional C method
 'c:\\autoexec.bat' // traditional C method
 'c:\autoexec.bat' // alternative ScriptEase method
Back quote strings are not supported in most versions of JavaScript. So if you are
planning to port your script to some other JavaScript interpreter, you should not use them.

Language Objects & Libraries 265

Long Strings: Using + to concatenate or join strings
You can use the + operator to concatenate strings. The following line:
 var proverb = "A rolling stone " + "gathers no moss."
creates the variable proverb and assigns it the string "A rolling stone gathers no moss." If
you try to concatenate a string with a number, the number is converted to a string.
 var newstring = 4 + "get it";
This bit of code creates newstring as a string variable and assigns it the string "4get it".

The use of the + operator is the standard way of creating long strings in JavaScript. In
ScriptEase, the + operator is optional. For example, the following:
 var badJoke = "I was standing in front of an Italian "
 "restaurant waiting to get in when this guy "
 "came up and asked me, \"Why did the "
 "Italians lose the war?\" I told him I had "
 "no idea. \"Because they ordered ziti"
 "instead of shells,\" he replied."
creates a long string containing the entire bad joke.

The String as object
Strings have both properties and methods which are listed in this section. These
properties and methods are discussed as if strings were pure objects. Strings have
instance properties and methods and are shown with a period, ".", at their beginnings. A
specific instance of a variable should be put in front of a period to use a property or call a
method. The exception to this usage is a static method which actually uses the identifier
String, instead of a variable created as an instance of String. The following code
fragment shows how to access the .length property, as an example for calling a String
property or method:.
 var TestStr = "123";
 var TestLen = TestStr.length;
String properties
.length
The length of a string can be obtained by using the length property. For example:
 var string = "No, thank you.";
 Screen.write(string.length);
displays the number 14, the number of characters in the string.

266 ScriptEase:ISDK/C

String instance methods
.charAt()
This method returns a character at a certain place in a string. To get the first character in a
string, use index 0, as follows:
 var string = "a string";
 string.charAt(0);
To get the last character in a string, use:
 string.charAt(string.length - 1);
.charCodeAt(index)
This method returns a number representing the unicode value of the character at position
index of a string. Returns NaN if there is no character at the position.

.indexOf(substring [, offset])
This method returns the index of the first appearance of a substring in a string. For
example:
 var string = "what a string";
 string.indexOf("a")
returns the position, which is 2 in this example, of the first "a" appearing in the string.
The method .indexOf() may take an optional second parameter which is an integer
indicating the index into a string where the method starts searching the string.

For example:
 var magicWord = "abracadabra";
 var secondA = magicWord.indexOf("a", 1);
returns 3, the index of the first "a" to be found in the string when starting from the second
letter of the string. Since the index of the first character is 0, the index of second
character is 1.

.lastIndexOf(substring [, offset])
This method is similar to .indexOf(), except that it finds the last occurrence of a character
in a string instead of the first.

.split([substring])
This method splits a string into an Array of strings based on the delimiters in the
parameter substring. The parameter substring is optional and if supplied, determines
where the string is split. If no delimiters are specified, the method returns an Array with
one element which is the original string.

For example, to create an Array of all of the words in a sentence, use code similar to the
following fragment:
 var sentence = "I am not a crook";
 var wordArray = sentence.split(' ');
.substring()
This method retrieves a section of a string. For example, to get the first ten characters in
string, use something like the following code fragment:
 var string = "a string with many words in it";

Language Objects & Libraries 267

 var substring = string.substring(0, 10);
.toLowerCase()
.toUpperCase()
These two methods change the case of a string. .toLowerCase() returns a copy of a
string with all of the letters changed to lower case. .toUpperCase() returns a copy of a
string with all of the letters changed to upper case.

String static methods
String.fromCharCode(char1, char2...)
This method returns a string created from the character codes that are passed to it as
parameters. The identifier String is used with this static method, instead of a variable
name as with instance methods. The arguments passed to this method are assumed to be
unicode characters. The following line:
 var string = String.fromCharCode(0x0041,0x0042)
set the variable string to be "AB".

The SElib Object
The methods in the SElib Object extend the functionality of JavaScript. Whereas the
Clib Object extends the power of JavaScript by providing functions from the standard C
library, the SElib extends power by allowing programmers to work with such things as
directories, files, memory, windows, messages, system operations, and script execution.

Memory
Routines that directly manipulate memory, as these routines do, should be used with
caution. A programmer should clearly understand memory and the operations of these
methods before using them.
.peek(address[, dataType])
This method reads and returns data from a specified address in memory. The address is a
pointer to memory. This method is similar to the Blob.get() method with the
parameter address replacing the parameters BlobVar and offset. If dataType is not
specified, then UWORD8 is assumed.

If dataType is supplied, it must be one of the following values:

UWORD8 SWORD8 UWORD16 SWORD16

UWORD24 SWORD24 UWORD32 SWORD32

FLOAT32 FLOAT64 FLOAT80

(FLOAT80 is not available for some environments)

See Clib.fread() for more information on these values.
.pointer(var)
This method returns the address in memory where the data in parameter var is stored.

268 ScriptEase:ISDK/C

var must be a string or a buffer. BLObs are okay since they are buffers.

For architectures that distinguish between near and far memory addresses, the value
returned by .pointer() is a far address.

ScriptEase data is guaranteed to remain fixed at its memory location only if that memory
is not modified by a script. So, a pointer is valid only until a script modifies var or until
var goes out of scope in a script. Putting data in the memory occupied by var after such
a change is dangerous. Whenever data is put into the memory occupied by var, be
careful not to put more data than will fit in the memory that var actually occupies.

This method prepares a BLOb that may be passed to a call in the operating system.
 // Assume there is an OS call that will perform a command
 // on a number of files. This call expects to receive a
 // C-defined packed structure like this:
 // struct
 // {
 // unsigned charFileCount;
 // char *Command; // Command to perform on files
 // char *FileName[1]; // array of pointers to file
 // } // names

 // Now prepare such a structure Blob.put(Data,2,UWORD);
 // how many names follow Blob.put(Data,pointer("DEL"),UWORD32);
 // set command

 Blob.put(Data, 2, UWORD32);
 Blob.put(Data, pointer("DEL"), UWORD32);
 Blob.put(Data, pointer("C:\\UTL\\DOG"), UWORD32);
 Blob.put(Data, pointer("C:\\UTL\\CAT"), UWORD32);

.poke(address, data [, dataDescriptor])
This method writes the value contained in data to the memory location specified by
address. The parameter address must be a valid memory pointer. This method is similar
to the Blob.put() method, with the parameter address replacing the parameters
BlobVar and offset.

If dataDescriptor is not specified then UWORD8 is assumed, and data must be a single
byte. If data is a buffer, then dataDescriptor must be the length of the buffer. If
data is an object, then dataDescriptor must be a description of that object.

If dataDescriptor is supplied, it must be one of the following values:

UWORD8 SWORD8 UWORD16 SWORD16

UWORD24 SWORD24 UWORD32 SWORD32

FLOAT32 FLOAT64 FLOAT80

(FLOAT80 is not available for some environments)

See Clib.fread() for more information on these values.

Language Objects & Libraries 269

Directories and files
.directory([, fileSpec [, subdirs [, incAttr [, reqAttr]]]])
This method returns an Object whose properties are strings containing the names of files
that match the path specification supplied by fileSpec. If no files match fileSpec, the
method returns null.

By default, the method .directory() returns the names of subdirectories and filenames
of normal files, read-only files, and files with the archive bit set. The parameter incAttr
specifies which attributes are considered when including files in the file list that is
returned.

The parameter fileSpec is any valid file specification that matches the criteria of an
operating system. A fileSpec may include drive and path information and may use
wildcards anywhere that is allowed by an operating system. If this parameter is not
supplied, then the default is the current directory that is current for a script.

The parameter subdirs is a Boolean that should be set to true to search subdirectories
or to false to limit a search to the directory, only, that is specified by fileSpec. The
default is false.

The parameter incAttr allows files to be retrieved based on what attribute flags are set.
Supplying one or more of the following flags causes .directory() to return only files
that have corresponding bits set:

FATTR_RDONLY Read-only file
FATTR_HIDDEN Hidden file
FATTR_SYSTEM System file
FATTR_SUBDIR Directory
FATTR_ARCHIVE Archive file

Flags that do not apply to an operating system are ignored. If 0 is passed, only files with
no attribute bits set are returned. If this parameter is not specified, then the default is:
 FATTR_RDONLY|FATTR_SUBDIR|FATTR_ARCHIVE|FATTR_NORMAL
This default flag setting for incAttr provides an example of how to use the or operator to
specify more than one flag.

The parameter reqAttr is specified in the same way as the flags for incAttr. Only files
with all of the specified attributes set are returned.

The file list that is returned by .directory() is an Object with the following
properties:

.name Full file name, including the SearchSpec path.

.attrib File flags, as defined above in IncAttr.

.size Size of file, in bytes.

.access Date and time of last file access in Clib.time format.

270 ScriptEase:ISDK/C

.write Date and time of last write to file Clib.time format.

.create Date and time of file creation Clib.time format.

The following routine lists all files, except subdirectory entries, in the current directory of
a script.
 function ListDirectory(FileSpec)
 {

 var FileList = SElib.directory(FileSpec,
False,~FATTR_SUBDIR)

 if (null == FileList)
 Clib.printf("No files found for search spec
\"%s\".\n",
 FileSpec);

 else
 {

 var FileCount = 1 +
getArrayLength(FileList);
 for (var i = 0; i < FileCount; i++)
 Clib.printf("%s\tsize = %d\tCreate
date/time = %s\n",
 FileList[i].name, FileList[i].size,
 Clib.ctime(FileList[i].Create));

 }
 }

.fullpath(pathSpec)
This method converts pathSpec into an absolute path name. The parameter pathSpec
must be a valid path specification. A string containing the full path specification is
returned, corresponding to the conventions of an operating system. If pathSpec is not
valid, the method returns null.

The following example returns the full specification of the current directory:.
 function CurDir()
 {

 return SElib.fullpath(".")
 }

The following routine works in DOS or OS/2 to test whether a drive letter is valid.
 function ValidDrive(DriveLetter)
 {

 Clib.sprintf(CurdirSpec,"%c:.",DriveLetter)
 return (null != SElib.fullpath(CurdirSpec))

 }

.splitFilename(fileSpec)
This method Splits the parameter fileSpec into its various components which conform
to the conventions of the operating system and returns an Object with the following
properties.

.dir the directory name, including leading and drive separator characters

Language Objects & Libraries 271

.name root name of the file

.ext extension name of the file, including preceding period

All properties are guaranteed to be non-null, and fileSpec can be reconstructed with the
following statement.
 var FileSpec = dir + name + ext;
The following lines are examples of using SElib.splitFilename(). The second
example applies to a file structure for DOS and OS/2.
 // sets parts.dir = "", parts.name = "foo", parts.ext = ""
 var parts = SElib.splitFilename("foo")

 // parts.dir = "..\\", parts.name = "*", parts.ext = ".doc"
 parts = SElib.splitFilename("..*.doc")

Script execution
Scripts
.interpretInNewThread(filename, textToInterpret)
For Win32 and OS/2

This method creates a new thread within the current ScriptEase process and interprets a
script within that new thread. The new script runs independently of the currently
executing thread. This method differs from .interpret() in that the calling thread does
not wait for the interpretation to finish and differs from .spawn() in that the new thread
runs in the same memory and process space as the currently running thread. The method
.interpretInNewThread() returns the ID number of the thread containing the new
instance of ScriptEase. If there is an error, 0 or -1 is returned, depending on the operating
system.

A script writer must ensure any synchronization among threads. ScriptEase data and
globals are on a per-thread basis.

If parameter filename is not null, then it is the name of a file to interpret and the
parameter textToInterpret is parsed as if having command-line parameters for a
main() function. If filename is null, then textToInterpret will be treated as
JavaScript code and interpreted directly.

This method is not supported on operating systems that do not support multithreading,
such as DOS and 16-bit Windows.
.spawn(mode, ExecutableSpec [, arg1[, arg2[,...]]])
This method launches another application. The parameter mode determines the behavior
of the script after the spawn call, while ExecutableSpec is the name of the process you
are spawning. Any arguments to the spawned process follow.

272 ScriptEase:ISDK/C

The parameter mode may be one of the following values. Note that not all values are
valid on all systems.
P_WAIT Wait for a child program to complete before continuing. (All

platforms)
P_NOWAIT A script continues to run while a child program runs. In windows, a

successful call with mode P_NOWAIT returns the window handle of
the spawned process. (Windows and OS/2)

P_SWAP Like P_WAIT, but swap out ScriptEase to create more room for
child process. P_SWAP will free up as much memory as possible by
swapping ScriptEase to EMS/XMS/INT15 memory or to disk (in
TMP directory, else TEMP, else current directory) before executing
the child process (thanks to Ralf Brown for his excellent spawn
library). (DOS only)

P_OVERLAY The script exits and child program is executed in its place. (DOS 16-
bit)

If the parameter mode is P_OVERLAY, there is no return value. If mode is P_WAIT, the
return is the exit code of the child process, else it is -1. If mode is P_NOWAIT or P_SWAP,
the return is the identifier of the child process if successful, else it is -1.

The parameter ExecutableSpec may be the path and filename of an executable file or
the name of a ScriptEase script. If it is a script, the spawned script runs from the same
instance of ScriptEase as the calling script. A spawned script does not cause another
instance of the interpreter to be launched. A script that has been bound with the
ScriptEase /BIND function cannot be spawned from the same instance as the calling
script.

The parameter ExecutableSpec is automatically passed as argument 0. ScriptEase
implicitly converts the arguments into strings before passing them on to the child process.

The parameter .spawn() searches for ExecutableSpec in the current directory and
then in the directories of the PATH environment variable. If there is no extension for
ExecutableSpec, .spawn() searches first for .com, .exe files, .bat, and .cmd files, in this
order.

If a batch file is being spawned in 16-bit DOS and the environment variable
COMSPEC_ENV_SIZE exists, the command processor is provided the amount of
memory as indicated by COMSPEC_ENV_SIZE. If COMSPEC_ENV_SIZE does not
exist, the command processor receives only enough memory for existing environment
variables.

A return value of -1 results in the setting of the property Clib.errno to identify why the
function failed.

Example

The following example calls a mortgage program, Mortgage.exe, which takes three
parameters, initial debt, rate, and monthly payment, and returns, in its exit code, the

Language Objects & Libraries 273

number of months needed to pay the debt.
 var months = SElib.spawn(P_WAIT, "MORTGAGE.EXE 300000 10.5
1000");
 if (months < 0)
 Screen.writeln("Error spawning MORTGAGE");
 else
 Clib.printf("It takes %d months to pay off the
 mortgage\n", months);
The parameters could also be passed to Mortgage.exe as separate variables, as in the
following.
 var months = SElib.spawn(P_WAIT,"MORTGAGE.EXE",300000,
 10.5,1000);
The same arguments could be passed to Mortgage.exe in a variable array, provided that
they are all of the same data type, in this case strings.
 var MortgageData;
 MortgageData[0] = "300000";
 MortgageData[1] = "10.5";
 MortgageData[2] = "1000";
 var ths = spawn(P_WAIT,"MORTGAGE.EXE",MortgageData);
See also the example for SElib.suspend().

.suspend(milliSecondDelay)
This method suspends program operation for the amount of time specified by
milliSecondDelay.

True accuracy to the millisecond is not guaranteed, and is only approximated according
to the accuracy provided by the underlying operating system. This method allows a
computer to devote more time to other processes and can be used to give the processor
time to complete tasks before calling the next line in a script.

The following example spawns a copy of Windows Notepad, puts the date and time into
the document by simulating the selection of Time/Date from the Edit menu, and then
displays the line "You asked for the time?". The .suspend() method gives the
processor time to finish completing the menu command before entering the text into
Notepad. If Keystroke() were called immediately after the call to MenuCommand(), the
text would be sent to Notepad while the menu item was still being selected and would be
garbled.
 #include "menuctrl.jsh"
 #include "keypush.jsh"
 var wHnd = SElib.spawn(P_NOWAIT, "notepad");
 MenuCommand(wHnd, "Edit##Time");
 SElib.suspend(300);
 Keystroke("\nYou asked for the time?");

In this example, execution is suspended for a little less than a third of a second. The delay
is not noticeable to humans but gives a computer enough time to finish a task.

274 ScriptEase:ISDK/C

Windows
.baseWindowFunction(handle, message, param1, param2)
This method calls the base procedure of a window created with a WindowFunction in
.makeWindow() or subclassed with .subclassWindow(). This method is normally
used within a ScriptEase window function to pass the window parameter to the base
procedure before handling it in your own code. Remember that if your window function
returns no value, ScriptEase will call the base procedure automatically which is the
preferred method.

This method returns the value returned by the base window function. If the parameter
handle is not a window with a WindowFunction created with .makeWindow() or is not a
window subclassed with .subclassWindow() then, the return is 0.

The parameter handle is a Window handle for the window receiving this message. This
handle must be the window handle of a window created with .makeWindow() or
subclassed with .subclassWindow().

The parameter message is a message ID.

The parameter param1 is the first parameter for this Message ID.

The parameter param2 is the second parameter for this Message ID.

.breakWindow([WindowHandle])
For Win32 and Win16

This method releases control of a window controlled by .subclassWindow() or
destroys a window previously created with .makeWindow(). No other windows are
affected. WindowHandle is the handle of a window being destroyed or released. If it is
not a valid window handle, no action is taken and true is returned.

When a window is destroyed all appropriate DestroyWindow() functions, internal to
Windows itself, are called. Any child windows of the main window are destroyed before
the main window.

If WindowHandle is a window controlled by .subclassWindow(), then this method
removes the WindowFunction for a window from the message function loop.

If WindowHandle is not supplied, then all windows created with makeWindow() are
destroyed and all subclassing ends.

If the method successfully destroys or subclasses its windows, the return is true, else the
return is false.

Language Objects & Libraries 275

.doWindows([boolean])
For Win32 and Win16.

This method interrupts standard script processing while allowing window functions to
receive and process their messages. This is a way for your script to use as little CPU
processing as is needed to handle windows it has created. Many of the flags that define
window messages are kept in the library file, Message.jsh.

If the optional parameter boolean is true, false being the default, the method returns
immediately, regardless of whether there were messages for this application or not.
Otherwise this method yields control to other applications until a message has been
processed, subject to filtering by .messageFilter(), for this application or for any
window subclassed by this application.

This method returns true if any of the windows created with .makeWindow() or
subclassed with .subclassWindow() are still open, that is, have not received
WM_NCDESTROY. This method returns false if there remain no valid windows
created by your script.

The following example displays a standard Windows window. If you click anywhere in
the window, the string "You clicked me!" is displayed briefly. When the window is
closed, the script terminates.
 #include "message.jsh"
 #include "window.jsh"
 main()
 {

 var hwnd = SElib.makeWindow(null, null,
WindowFunction,

 "Display Windows' messages",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 CW_USEDEFAULT, CW_USEDEFAULT, 500, 350, null, 0);
 SElib.messageFilter(hwnd, WM_LBUTTONDOWN);
 //execute until all my windows are closed
 while(SElib.doWindows());
 }

 function WindowFunction(hwnd, msg, parm1, parm2)
 {

 if (msg == WM_LBUTTONDOWN)
 {

 var msgHwnd = SElib.makeWindow(hwnd, "static",
null,

 "You clicked me!",
 WS_CHILD | WS_VISIBLE,
 200, 150, 100, 50, null, 0);
 SElib.suspend(1000);
 SElib.breakWindow(msgHwnd);

 }
 }

276 ScriptEase:ISDK/C

.makeWindow(Parent, Class, WindowFunction, Text, Style, Column, Row,
Width, Height, CrParm[, UtilityVar])

For Win32 and Win16

This method makes a window for display and for receiving windows messages. Created
windows will receive their messages during normal script processing (in the small
interval between each ScriptEase statement, when a message is sent to that window, as
opposed to posted messages), or during calls to .doWindows. The Window Class is
registered if it is an unknown class, and WindowFunction is called by Windows for every
Windows message.

This method is complex and forms the basis for all the behavior generally seen in a
Windows program.

For the parameter Parent, if a window is to be created on the desktop, pass null. If it is
a subwindow, pass the window handle of the main window.

The parameter Class may be either an object or a string. If it is a string, it must be the
name of a pre-existing Windows' class, such as "edit" or "button." If it is an object, it may
have the properties listed below. Properties that are not defined receive default values.

.style style

.icon bitmap icon for minimized window

.cursor cursor appearance when over this window

.background window background color
The parameter WindowFunction is a function that is called every time Windows sends a
message to the new window. Set WindowFunction to null if no WindowFunction is to
be called. If WindowFunction has a return value it must be a number. The function must
have the following format.
 int WindowFunction(Handle, Message, Param1, Param2, UtilityVar)

Handle Window handle for window receiving this message
Message The message ID
Param1 First parameter for this Message ID
Param2 Second parameter for this Message ID
UtilityVar An optional variable used to pass data to the

WindowFunction. See below.
Use the method SElib.messageFilter() to filter messages to the window.
For more information about WindowFunction, see below.

The parameter Text is the window text or title. If there is no text, text is set to null, or
an empty string.

The parameter Style is the window style, as defined by the WS_xxxx values in
Windows.jsh.

The parameters Column and Row position the upper-left corner for the window when it is
created. Use CW_USEDEFAULT to let Windows choose the position.

Language Objects & Libraries 277

The parameters Width and Height set the dimensions of the window.

The parameter CrParm is generally set to null. It may be a number or object to pass with
the window's WM_CREATE message.

The optional parameter UtilityVar is any variable that you choose to make available to
the WindowFunction. This variable may be any kind of variable, including a structure if
you want to pass many values to the WindowFunction. WindowFunction may also
alter UtilityVar. If this parameter is not supplied, then no such variable will be
available to the WindowFunction().

On success, the method returns WindowHandle of the created window. The method
returns null for failure. See .doWindows() for an example.

.messageFilter(WinHandle[, Message1[, Message2[, . . .]]])
For Win32 and Win16

This method restricts the messages processed by ScriptEase created with
.makeWindow() or subclassed with .subclassWindow(). Scripts run much faster if
ScriptEase only processes the messages that they act on and lets the OS platform default
processing on all other messages. Initially, there are no message filters so all messages
are processed.

WinHandle is a window handle for a window created with .makeWindow() or
subclassed with .subclassWindow().

.multiTask(bool)
For Win16

Normally, multitasking is enabled and should be turned off only for very brief and critical
sections of code. No messages are received by the current program or any other program
while multitasking is off.

The method .multiTask() is additive, meaning that if you call .multiTask(false)
twice, then you must call .multiTask(true) twice before multitasking is resumed.

The following section of code empties the clipboard. Multitasking is turned off during
this brief interval to ensure that no other program tries to open the clipboard while this
program is accessing it.
 SElib.multiTask(false);
 SElib.dynamicLink("USER", "OPENCLIPBOARD", SWORD16, PASCAL,
 Screen.handle());

 SElib.dynamicLink("USER", "EMPTYCLIPBOARD", SWORD16, PASCAL);
 SElib.dynamicLink("USER", "CLOSECLIPBOARD", SWORD16, PASCAL);
 SElib.multiTask(true);

.subclassWindow(WindowHandle, WindowFunction[,UtilityVar])

278 ScriptEase:ISDK/C

For Win32 and Win16

This method hooks the specified WindowFunction into the message loop for a window
such that the function is called before the window's default or previously-defined
function. This method is most powerful when used to modify the behavior of windows
belonging to other processes.

The parameter WindowHandle is the window handle of an already existing window to
subclass.

The parameter WindowFunction is the same as in the .makeWindow() method. Note
that, as in the .makeWindow() method, if this method returns a value, then the default or
subclassed function is not called. If this method returns no value, then call is passed on to
the previous function. This method may be used to subclass any Window that is not
already being managed by a WindowFunction for this ScriptEase instance. If a window
was created with .makeWindow() or is already subclassed then this method fails.
A WindowFunction may modify UtilityVar.
In your function that handles messages for another process, certain limits are set as to
what you can do with system resources. For example, an open file handle is invalid while
processing a message for another program, because Windows maps any file handles into
a table for that other program. To work around this problem, you may want to send a
message to one of your ScriptEase windows to handle the processing. This action
switches Windows' tables to your program while handling that SendMessage.

This method returns false if WindowHandle is invalid, was created with
.makeWindow(), or is already subclassed, else it returns true.

.windowList([WinHandle])
For Win32 and Win16

This method returns an array of all child window handles of WinHandle. If WinHandle
is not supplied, it will return an array of all windows on the desktop.

Dynamic links
For Win32, Win16, and OS/2

This method allows flexibility when making calls to dynamic link libraries, DLLs, and
allows access to operating-system functions not explicitly provided by ScriptEase. If you
know the proper conventions for a call, then you can make a .dynamicLink() call in a
ScriptEase function to be used for making a system call. Such a function is referred to as
a wrapper, a function in which a system call becomes available as a function call.

Language Objects & Libraries 279

There are three versions of .dynamicLink(): Win32, Win16, and OS/2. These three
versions differ slightly in the way they are called. So, if you wish to use one function in a
script that will be run on different platforms, you must create an operating system filter
using preprocessor directives: #if, #ifdef, #elif, #else, and #endif.

Since the three versions are different in the way that they call .dynamicLink(), they will
be treated separately.
.dynamicLink(Library, Procedure, Convention, . . .)

For Win32

The parameter Library is the name of the dynamic link library in which the procedure is
located.

The parameter Procedure is the name or ordinal number of the procedure in the
Library dynamic link library.

The parameter Convention specifies the calling convention and may be one of the
following.

CDECL Push right parameter first; Caller pops parameters.

STDCALL Push right parameter first; Caller pops parameters. This is almost
always the option used in Win32.

PASCAL Push left parameter first; Callee pops parameters.

All values are passed as 32-bit values. If a parameter is undefined when dynamicLink()
is called, then it is assumed that the parameter is a 32-bit value to be filled in, that is, the
address of a 32-bit data element is passed to the function, and that function will set the
value.

If any parameter is a structure then it must be a structure that defines the binary data
types in memory to represent the following variable. Before calling the DLL function, the
structure is copied to a binary buffer as described in Blob.put() and Clib.fwrite().
After calling the DLL function, the binary data will be converted back into the data
structure according to the rules defined in Blob.get() and Clib.fread(). Data
conversion is performed according to the current _BigEndianMode setting.

The following routine calls the Windows MessageBeep() function:
 SElib.dynamicLink("USER32","MessageBeep",STDCALL,0);

280 ScriptEase:ISDK/C

The following example displays a simple message box and waits for user to press Enter.
 #include <msgbox.jsh>

 MessageBox("The following samples show various ways\n"
 "to use the Windows MessageBox() function.\n"
 "A wrapper for MessageBox() is located in\n"
 "the jse library: \"MsgBox.jsh\"",
 "MsgBoxes - Welcome!");

 MessageBox("This example only passes 1 parameter: the message
 string.");

 MessageBox("This passes the message string and a
 title.","Here is the title.");

 MessageBox("This example passes a zero-length string to get
 no title.","");

 switch (MessageBox("You can also offer different
 choices.\nPick one now...", "MessageBox()

choices",
 MB_YESNOCANCEL)) {
 case IDYES: button = "Yes"; break;
 case IDNO: button = "No"; break;
 case IDCANCEL: button = "Cancel"; break;
 }

 Clib.sprintf(message,"You selected the %s button",button);
 MessageBox(message,"");

.dynamicLink(Library, Procedure, RetType, Convention, . . .)
For Win16

The parameter Library is the name of the dynamic link library in which the procedure is
located.

The parameter Procedure is the name or ordinal number of the procedure in the
Library dynamic link library.

The parameter RetType tells ScriptEase what type of value the procedure returns, so that
it can be properly converted into a ScriptEase number. Return types, such as SWORD16
and UWORD32, are described in the Clib.fread() function.

The parameter Convention specifies the calling Convention and may be one of the
following.

CDECL Push right parameter first; Caller pops parameters.
PASCAL Push left parameter first; Callee pops parameters.

If the parameter is a BLOb, a byte-array, or an undefined value, it is passed as a 32-bit far
pointer. All other numeric values are passed as 16-bit values; if 32-bits are needed for an

Language Objects & Libraries 281

integer, the parameter must be passed in parts, with the low word first and the high word
second for CDECL calls but the high word first and low word second for PASCAL calls.

If a parameter is undefined when .dynamicLink() is called, then it is assumed that the
parameter is a far pointer to be filled in, that is, that the far address of an integer data
element is passed to the function and that function will set the value. If any parameter is a
structure, then it must be a structure that defines the binary data types in memory to
represent the following variable. Before calling the DLL function, the structure will be
copied to a binary buffer as described in Blob.put() and Clib.fwrite(). After
calling the DLL function, the binary data is converted back into the data structure
according to the rules defined in Blob.get() and Clib.fread(). Data conversion is
performed according to the current _BigEndianMode setting.
.dynamicLink(Library, Ordinal, BitSize, Convention, . . .)

For OS/2

The parameter Library is the name of the dynamic link library in which the procedure is
located.

The parameter Ordinal is the name or ordinal number of the procedure in the Library
dynamic link library.

The parameter BitSize defines whether this is a 16-bit or a 32-bit call. It may be either
one of the pre-defined values: BIT16 or BIT32.

Calling Convention may be any of the following:

CDECL Push right parameter first; Caller pops parameters.

STDCALL Push right parameter first; Caller pops parameters.

PASCAL Push left parameter first; Callee pops parameters.

The OS/2 processor also allows you to call a function via a call gate with the following
syntax:
 SElib.dynamicLink(CallGate, BitSize, Convention, . . .)
where CallGate is the gate selector for a routine referenced through a call gate.

Any parameters required by a dynamically linked function should be passed at the end of
the parameters listed above. These variables are interpreted as follows, depending on the
operating system.

For 32-bit functions, all values are passed as 32-bit values. For 16-bit functions, if the
parameter is a BLOB, a byte-array, or an undefined value, then it is passed as a 16:16
segment:offset pointer, otherwise all numeric values are passed as 16-bit values, so if
32-bits are needed they must be passed in parts, with the low word first and the high word
second.

If a parameter is undefined when .dynamicLink() is called, then it is assumed that
parameter is a 32-bit value to be filled in, that is, that the address of a 32-bit data element
is passed to the function and that function will set the value. If any parameter is a
structure then it must be a structure that defines the binary data types in memory to
represent the following variable. Before calling the DLL function, the structure is copied

282 ScriptEase:ISDK/C

to a binary buffer as described in Blob.put() and Clib.fwrite(). After calling the
DLL function, the binary data is converted back into the data structure according to the
rules defined in Blob.get() and Clib.fread(). Data conversion is performed
according to the current _BigEndianMode setting. Any of these calls return the value
returned by the dynamically-linked function as interpreted according to RetType.

General
.getObjectProperties(ObjectVar[, IncludeUndefinedProperties])
This method returns an array of strings and each string is the name of a property of the
Object passed as ObjectVar.

The parameter IncludeUndefinedProperties must be true to return properties that
are not defined. If IncludeUndefinedProperties is false, then only properties that
have defined data are included. The default for IncludeUndefinedProperties is
false.

The final member of the returned array returned is always null. If ObjectVar is not
defined or contains no properties to be displayed, then the return is an array with a single
element set to null.

The following example:
 var Point;
 Point.row = 5;
 Point.col = 8;
 Point.height;
 PrintAllStructureMembers(Point);

 function PrintAllStructureMembers(ObjectVar)
 {

 Screen.writeln("Object Properties:");
 var MemberList = SElib.getObjectProperties(ObjectVar);
 for (var i = 0; null != MemberList[i]; i++)

 Screen.writeln(" " + MemberList[i]);
 }
produces the following output.
 Object Properties:
 row
 col

.inSecurity(infoVar)
This method calls the security manager's initialization routine and is the only way your
application can directly interact with the security filter. It is provided so you can
reinitialize the security system, probably to change the security level of a script.

Typically, you use this method when executing a particularly insecure piece of code, such
as a script received over a network, to downgrade the security level, restoring it when the
script completes.

Language Objects & Libraries 283

The parameter infoVar is the variable to be passed to the security filter. Your application
and its security filter may use it however you choose.

The return is true if there is a security filter, and false if there is not.

The Clib object
The Clib object contains functions that are a part of the standard C library. Methods to
access files, strings, and characters are all part of the Clib object. Some functions have
been moved to the section on redundant methods at the end of this descriptions of the
Clib object. These methods may be considered redundant since their actions have been
duplicated by JavaScript objects. Redundant functions may be used if desired since they
still work fully.

Console I/O functions
.printf(formatString, [variables...])
This method writes output to the standard output device according to the format string
and returns a number equal to the number of characters written, or a negative number if
there is an error. The format string can contain character combinations indicating how
following parameters are to be treated. Characters are printed as read to standard output
until a percent character, %, is reached. % indicates that a value is to be printed from the
parameters following the format string. Each subsequent parameter specification takes
from the next parameter in the list following format. A parameter specification takes this
form (square brackets indicate optional fields, angled brackets indicate required fields):
 %[flags][width][.precision]<type>

flags may be:
- Left justification in the field with blank padding; else right justifies

with zero or blank padding
+ Force numbers to begin with a plus (+) or minus (-)
blank Negative values begin with a minus (-); positive values begin with a

blank
Convert using the following alternate form, depending on output data

type:
c,s,d,i,u No effect
o 0 (zero) is prepended to non-zero output
x,X 0x, or 0X, are prepended to output
f,e,E Output includes decimal even if no digits follow decimal
g,G Same as e or E but trailing zeros are not removed

284 ScriptEase:ISDK/C

width may be:
n (n is a number e.g., 14) At least n characters are output, padded with

blanks
0n At least n characters are output, padded on the left with zeros
* The next value in the argument list is an integer specifying the output

width
.precision If precision is specified, then it must begin with a period (.), and may

be as follows:

.0 For floating point type, no decimal point is output

.n n characters or n decimal places (floating point) are output

.* The next value in the argument list is an integer specifying the
precision width

type may be:
d,i signed integer
u unsigned integer
o octal integer x
x hexadecimal integer with 0-9 and a, b, c, d, e, f
X hexadecimal integer with 0-9 and A, B, C, D, E, F
f floating point of the form [-]dddd.dddd
e floating point of the form [-]d.ddde+dd or [-]d.ddde-dd
E floating point of the form [-]d.dddE+dd or [-]d.dddE-dd
g floating point of f or e type, depending on precision
G floating point of For E type, depending on precision
c character ('a', 'b', '8', e.g.)
s string

To include the % character as a character in the format string, you must use two %
characters together, %%, to prevent the computer from trying to interpret it as one of the
above forms.
Example:
Each of the following lines shows a printf example followed by what would show on the
output in boldface:
 Clib.printf("Hello world!")
 Hello world!
 Clib.printf("I count: %d %d %d.",1,2,3)
 I count: 1 2 3
 var a = 1;
 var b = 2;
 Clib.printf("%d %d %d", a, b, a +b)
 1 2 3

Language Objects & Libraries 285

.getch()
This method works exactly like getche(), but does not echo the returned key to the screen.
For example, the following code has you enter a password; each time you enter a letter an
asterisk is written to the screen:
 var password;
 for (var gg = 0; ;gg++)
 {

 var letter = Clib.getch();
 if (letter == '\n') continue;
 Clib.putchar('*'.charCodeAt(0));
 password[gg] = letter;

 }

.getchar()
This method returns the next character from stdin. Usually, this is the keyboard, but you
may redefine it to something else. This method will wait for "enter" to be pressed after
the key, and will then return two values: the key pressed, and then the value of the enter
key.

.getche()
This method waits until a key is pressed and returns the character value of that key. The
character will be printed (echoed) to the screen. Some key presses, such as extended keys
and function keys, may generate multiple getche() return values. If a key was pressed
before calling the function but never cleared from the keyboard buffer, that value will be
returned instead of the next pressed key. This is not a common occurrence but can
happen. To see whether there are any key values pending in the keyboard buffer, use
.kbhit().

.gets()
This method reads an entire string from the keyboard and returns it (or null if there was
an error). The function will read all characters up to a newline character or EOF. If a
newline character is read, it will not be included in the string.

.kbhit()
This method checks to see whether there are any keystrokes waiting to be processed,
returning true if there are and false if there are not.

.putchar(c)
This method writes the character c to the stream defined by stdout (usually the screen). If
successful, it will return the character it just wrote; if not, it will return EOF.

This method is identical to .fputc(c, stdout).

286 ScriptEase:ISDK/C

.puts(string)
Writes the string to stdout, followed by a newline character. It will not write the final
null character of null-terminated strings. It returns EOF if there is an error writing the
string; otherwise it returns a positive number.

This method is identical to .fputs(s, stdout) except that a newline character is
written after the string.

.scanf()
This flexible method reads input from the screen, extracts data from it by matching the
string to a format string (as described below), and stores the data in the variables which
follow the format string. It returns the number of input items assigned; this number may
be fewer than the number of parameters requested if there was a matching failure. The
format string contains character combinations that specify the type of data expected. The
format string specifies the admissible input sequences, and how the input is to be
converted to be assigned to the variable number of arguments passed to this function.
Characters are matched against the input as read and as it matches a portion of the format
string until a % character is reached. % indicates that a value is to be read and stored to
subsequent parameters following the format string. Each subsequent parameter after the
format string gets the next parsed value taken from the next parameter in the list
following format. A parameter specification takes this form (square brackets indicate
optional fields, angled brackets indicate required fields):
 %[*][width]<type>

*, width, and type may be:
* Suppress assigning this value to any parameter
width maximum number of characters to read; fewer will be read if whitespace or

nonconvertible character
type may be one of the following:

d,D,i,I signed integer
u,U unsigned integer
o,O octal integer
x,X hexadecimal integer
f,e,E,g,G floating point number
c character; if width was specified then this will be an array of

characters of the specified length
s string
[abc] string consisting of all characters within brackets; where A-Z

represents range "A" to "Z"
[^abc] string consisting of all character NOT within brackets.

Modifies any number of parameters following the format string, setting the parameters to
data according to the specifications of the format string.

Language Objects & Libraries 287

.vprintf(stream, valist)
This method displays formatted output on the standard output stream, screen, using a
variable number of arguments. This method is similar to .printf() except that it takes
a variable argument list using valist. See .printf() and .va_start() for more
information. The method .vprintf() returns the number of characters written on
success, else a negative number on error.

The following function acts just like a .printf() statement except that it beeps,
displays a message, beeps again, and waits a second before returning. This method could
be a wrapper for the .printf() method to display urgent messages.
function UrgentPrintf(FormatString /*, arg1,arg2, . . . */)
{

//create variable arg list
Clib.va_start(va_list, FormatString);
Screen.write("\a"); // audible beep
// printf original statement
var ret = Clib.vprintf(FormatString, va_list);
Screen.write("\a"); // beep again
SElib.suspend(1000); // wait a second before returning
Clib.va_end(va_list); // end using va_list
return(ret); // return as printf would }

}

.vscanf(formatstring, valist)
This method gets formatted input from the standard input stream, the keyboard, using a
variable number of arguments. This method is similar to .scanf() except that it takes a
variable argument list. See .scanf() and .va_start() for more information.

The method .vscanf() modifies any number of parameters following formatstring,
setting the parameters to data according to the specifications of the format string. These
parameters are specified by valist.

This method returns the number of input items assigned. This number may be fewer than
the number of parameters requested if there is a matching failure during input.

288 ScriptEase:ISDK/C

The following function behaves like .scanf(), including taking a variable number of
input arguments, except that it beeps and tries again if there are zero matches.
function Must_scanf(FormatString /*, arg1,arg2,arg3, . . .*/)
 {
 Clib.va_start(va_list, FormatString);
 // creates variable arg list
 do
 { // mimic original scanf() call
 var count = Clib.vscanf(FormatString, va_list);
 if (0 == count) // if no match, then beep
 Screen.write("\a");
 } while(0 == count);
 // if not match, then try again
 Clib.va_end(va_list);
 // end using va_list (optional)
 return(count);
 // return as scanf would
 }

Time functions
The Clib object (like the Date object) represents time in two distinct ways: as an
integral value (the number of seconds passed since January 1, 1970) and as a Time object
with properties for the day, month, year, etc. This Time object is distinct from the
standard JavaScript Date object. You cannot use Date object properties with a Time
object or vice versa.

In the methods below, Time represents a variable in the Time object format, while
timeInt represents an integral time value.

.asctime(Time)
Returns a string representing the date and time extracted from a Time object (as returned
by .localtime()). The string will have this format:
 Mon Jul 19 09:14:22 1993

.clock()
Returns the current processor tick count. Clock value starts at 0 when ScriptEase program
begins and is incremented CLOCKS_PER_SEC times per second.

.ctime(timeInt)
This method is equivalent to: Clib.asctime(Clib.localtime(time)), where
timeInt is a date-time value as returned by the .time() function.

.difftime(timeInt0, timeInt1)
This method returns the difference in seconds between two times. timeInt0 and
timeInt1 are integral time values as returned by the .time() function.

Language Objects & Libraries 289

.gmtime(timeInt)
Takes the integer timeInt (as returned by the time() function) and converts it to a
Time object representing the current date and time expressed as Greenwich mean time.
See localtime() for a description of the returned object.

.localtime(timeInt)
This method returns the value timeInt (as returned by the time() function) as a Time
object. Note that the Time object differs from the Date object, although they contain
similar data. The Time object is for use with the other date and time functions in the
Clib object. It has the following integer properties:

.tm_sec second after the minute (from 0)

.tm_min minutes after the hour (from 0)

.tm_hour hour of the day (from 0)

.tm_mday day of the month (from 1)

.tm_mon month of the year (from 0)

.tm_year years since 1900 (from 0)

.tm_wday days since Sunday (from 0)

.tm_yday day of the year (from 0)

.tm_isdst daylight-savings-time flag

The following function prints the current date and time on the screen and returns the day
of the year, where Jan 1 is the 1st day of the year:
 ShowToday()
 // show today's date; return day of the year in USA format
 {

 // get current time structure
 var tm = localtime(time());
 // display the date in USA format
 Clib.printf("Date: %02d/%02d/%02d", tm.tm_mon+1,
 tm.tm_mday, tm.tm_year % 100);
 // convert hour to run from 12 to 11, not 0 to 23
 var hour = tm.tm_hour % 12;
 if (hour == 0)

 // print current time
 Clib.printf("Time: % 2d:%02d:%02d\n", hour,
tm.tm_min, tm.tm_sec);
 // return day of year, where Jan. 1 would be day 1

 return(tm.tm_yday + 1);
 }

.mktime(Time)
This method converts Time (an object as returned by .localtime()) to the time format
returned by .time() (an integer). All undefined elements of Time will be set to 0 before
the conversion. It returns -1 if time cannot be converted or represented.

In other words, while .localtime() converts from a time integer to a Time object,
.mktime() converts from a Time object to a time integer.

290 ScriptEase:ISDK/C

.strftime(&stringVar, formatString, Time)
This method creates a string that describes the date and or time and stores it in the
variable stringVar. formatString describes what the string will look like; Time is a time
object as returned by .localtime().

These following conversion characters are used with strftime() to indicate time and date
output:
%a abbreviated weekday name (Sun)
%A full weekday name (Sunday)
%b abbreviated month name (Dec)
%B full month name (December)
%c date and time (Dec 2 06:55:15 1979)
%d two-digit day of the month (02)
%H two-digit hour of the 24-hour day (06)
%I two-digit hour of the 12-hour day (06)
%j three-digit day of the year from 001 (335)
%m two-digit month of the year from 01 (12)
%M two-digit minute of the hour (55)
%p AM or PM (AM)
%S two-digit seconds of the minute (15)
%U two-digit week of the year where Sunday is first day of the week (48)
%w day of the week where Sunday is 0 (0)
%W two-digit week of the year where Monday is first day of the week (47)
%x the date (Dec 2 1979)
%X the time (06:55:15)
%y two-digit year of the century (79)
%Y the year (1979)
%Z name of the time zone, if known (EST)
%% the per cent character (%)

Example:
The following code displays the full day name and month name of the current day:
 Clib.strftime(TimeBuf,"Today is: %A, and the month is: %B",

 Clib.localtime(time()));
 Clib.puts(TimeBuf);

Language Objects & Libraries 291

.time([&t])
Returns an integer representation of the current time. The format of the time is not
specifically defined except that it represents the current time, to the system's best
approximation, and can be used in many other time-related functions. If t is supplied then
it will be set to equal the returned value.

Script execution
.abort([AbortAll)
This method terminates a program, usually when a specified error occurs. This method
causes abnormal program termination and should only be called on a fatal error. This
method exits, without returning to the caller, and returns EXIT_FAILURE to the
operating system.

If the boolean AbortAll is true, this method aborts through all levels of ScriptEase
interpretation. If you are in multiple levels of .interpret(), .abort(true) aborts
through all .interpret() levels.

.assert(boolean)
If boolean evaluates to false this function will print the file name and line number to
stderr and abort. If the assertion evaluates to true then the program continues.
.assert() is typically used as a debugging technique to test assumptions before
executing code based on those assumptions. Unlike C, the ScriptEase implementation of
assert does not depend upon NDEBUG being defined or undefined; it is always active.

The Inverse() function below returns the inverse of the input number (i.e., 1/x):
 function Inverse(x) // return 1/x
 {

 assert(0 != x);
 return 1 / x;

 }
.atexit(exit Function)
This method registers a function to be called when the script ends. The variable exit
function passed to this function is a function to be called.

.exit(status)
This method causes normal program termination. It calls all functions registered with
.atexit(), flushes and closes all open file streams, updates environment variables if
applicable to this version of ScriptEase, and returns control to the OS environment with
the return code of status.

292 ScriptEase:ISDK/C

.system(commandString)

.system(P_SWAP, commandString) (DOS versions only)
Passes commandString to the command processor and returns whatever value was
returned by the command processor. commandString may be a formatted string
followed by variables according to the rules defined in .sprintf().

DOS In the DOS version of ScriptEase, if the special argument P_SWAP is
used then SeDos.exe is swapped to EMS/XMS/INT15 memory or disk
while the system command is executed. This leaves almost all available
memory for executing the command. See SElib.spawn() for a discussion
of P_SWAP.

DOS32 The 32-bit protected mode version of DOS ignores the first parameter if
it is an not a string

; in other words, P_SWAP is ignored.

Error
.errno
The property .errno stores diagnostic message information when a function fails to
execute correctly. Many functions in the Clib and SElib objects set .errno to non-zero
in case of error to provide more specific information about the error. ScriptEase
implements .errno as a macro to the internal function _errno(). This property can be
accessed with .perror() or .strerror().

.clearerr(filePointer)
This method clears the error status and resents the end-of-file flags for the file associated
with filePointer. There is no return value.

.ferror(filePointer)
The parameter filePointer is a file pointer as returned by .fopen(). This method tests
and returns the error indicator for stream file. Returns 0 if no error, otherwise returns the
error value.

.perror([&string])
Prints and returns an error message that describes the error defined by .errno. This
method is identical to calling .strerror(errno). If a string variable is supplied it will be set
to the string returned.

Language Objects & Libraries 293

.strerror(errno)
When some functions fail to execute properly, they store a number in the .errno property.
The number corresponds to the type of error encountered. This method converts the error
number to a descriptive string and returns it.

This method opens a file for reading, and if it cannot open the file then it prints a
descriptive message and exits the program:
 function MustOpen(filename)
 {

 var fh = fops(filename,"r");
 if (fh == null)
 {

 Clib.printf("Error:%s\n",strerror(errno));
 Clib.exit(EXIT_FAILURE);

 }
 return(fh);

 }

File I/O:
.fopen(filename, mode)
This method opens the file specified by filename for file operations specified by mode,
returning a file pointer (filePointer) to the file opened. null is returned in case of failure.

The parameter filename is a string. It may be any valid file name, excluding wildcard
characters.

The parameter mode is a string composed of "r", "w", or "a" followed by other characters
as follows:

r open file for reading; file must already exist

w open file for writing; create if doesn't exist; if file exists then truncate to zero
length

a open file for append; create if doesn't exist; set for writing at end-of-file

b binary mode; if b is not specified then open file in text mode (end-of-line
translation)

t text mode

+ open for update (reading and writing)

When a file is successfully opened, its error status is cleared and a buffer is initialized for
automatic buffering of reads and writes to the file.

294 ScriptEase:ISDK/C

The following code opens the text file "ReadMe" for text-mode reading, and displays
each line in that file:
 var fp = Clib.fopen("ReadMe","rt");
 if (fp == null)

 Clib.printf("\aError opening file for reading.\n")
 else

 while (null != (line=Clib.fgets(fp)))
 {

 Clib.fputs(line, stdout)
 }
 Clib.fclose(fp);

.fclose(filePointer)
filePointer is a file pointer as returned by .fopen(). This method flushes the
stream's file buffers and closes the file. The file pointer ceases to be valid after this call.
Returns zero if successful, otherwise returns EOF.

.feof(filePointer)
filePointer is a file pointer as returned by .fopen(). This method returns an integer
which is non-zero if the file cursor is at the end of the file, and 0 if it is NOT at the end of
the file.

.fflush(filePointer)
Causes any unwritten buffered data to be written to filePointer. If filePointer is
null then flushes buffers in all open files. Returns zero if successful; otherwise EOF.

.fgetc(filePointer)
This method returns the next character in the file stream indicated by filePointer as a
byte converted to an integer. If there is a read error or the file cursor is at the end of the
file EOF will be returned. If there is a read error then ferror() will indicate the error
condition.

.fgetpos(filePointer, &pos)
This method stores the current position of the file stream filePointer for future
restoration using .fsetpos(). The file position will be stored in the variable pos; use it
with .fsetpos() to restore the cursor to its position. Returns zero for success, otherwise
returns non-zero and stores an error value in .errno.

.fgets([number,] filePointer)
This method returns a string consisting of the characters in a file from the current file
cursor to the next newline character. The newline will be returned as part of the string. If
there is an error or the end of the file is reached null will be returned.

A second syntax of this function takes a number as its first parameter. This number is the
maximum length of the string to be returned if no newline character was encountered.

Language Objects & Libraries 295

.fprintf(filePointer, formatString,...)
This flexible function writes a formatted string to the file associated with filePointer.
The second parameter, formatString, is a string of the same pattern as .sprintf() and
.rsprintf.

.fputc(charVar, filePointer)
If charVar is a string, the first character of the string will be written to the file indicated
by filePointer. If charVar is a number, the character corresponding to its unicode
value will be added.

If successful, the character written will be returned, otherwise EOF is returned.

.fputs(string, filePointer)
This method writes the value of string to the file indicated by filePointer. Returns
EOF if write error, else returns a non-negative value.

.fread(&destVar, varDescription, fp)
This method reads data from an open file and stores it in destVar. If it does not yet exist
destVar will be created. varDescription is a variable that describes the how and how
much data is to be read: if destVar is a buffer, it will be the length of the buffer; if
destVar is an object, varDescription must be an object descriptor; and if destVar is
to hold a single datum then varDescription must be one of the following.

UWORD8 Stored as a byte in DestVar

SWORD8 Stored as an integer in DestVar

UWORD16 Stored as an integer in DestVar

SWORD16 Stored as an integer in DestVar

UWORD24 Stored as an integer in DestVar

SWORD24 Stored as an integer in DestVar

UWORD32 Stored as an integer in DestVar

SWORD32 Stored as an integer in DestVar

FLOAT32 Stored as a float in DestVar

FLOAT64 Stored as a float in DestVar

FLOAT80 Stored as a float in DestVar (not available in some systems)

In all cases, this function returns the number of elements read. For DestBuffer this would
be the number of bytes read, up to bufferLen. For DataTypeInFile this returns 1 if the
data is read or 0 if read error or end-of-file is encountered.

296 ScriptEase:ISDK/C

For example, the definition of a structure might be:
 ClientDef = new blobDescriptor();
 ClientDef.Sex = UWORD8;
 ClientDef.MaritalStatus = UWORD8;
 ClientDef._Unused1 = UWORD16;
 ClientDef.FirstName = 30; ClientDef.LastName = 40;
 ClientDef.Initial = UWORD8;
The ScriptEase version of fread() differs from the standard C version in that the
standard C library is set up for reading arrays of numeric values or structures into
consecutive bytes in memory. In JavaScript this is not necessarily the case.

Data types will be read from the file in a byte-order described by the current value of the
_BigEndianMode global variable.

To read the 16-bit integer "i", the 32-bit float "f", and then 10-byte buffer "buf" from
the open file "fp" use code like the following.
 if (!Clib.fread(i,SWORD16,fp) || !Clib.fread(f,FLOAT32,fp)
 || 10 != Clib.fread(buf,10,fp))
 {

 Clib.printf("Error reading from file.\n");
 Clib.abort();

 }
.freopen(filename, mode, oldFp)
This method closes the file associated with oldFp (ignoring any close errors), and then
opens filename according to mode (as in .fopen()) , and reassociates oldFp to this new
file specification. This method is commonly used to redirect one of the pre-defined file
handles (stdout, stderr, stdin) to or from a file.

The method returns a copy of the modified oldFp, or null if it fails.

This sample code will call the ScriptEase for DOS program with no parameters (which
causes a help screen to be printed), but redirecting stdout to a file se.out so that se.out will
contain the text of the ScriptEase help screens.
 if (null == Clib.freopen("SE.OUT","w",stdout))

 Clib.printf("Error redirecting stdout\a\n")
 else

 Clib.system("SEDOS.EXE");
.fscanf(filePointer, formatString [, ...])
This flexible function reads input from the file indicated by filePointer and stores in
parameters following formatString according the character combinations in the format
string, which indicate how the file data is to be read and stored. The file must be open,
with read access. .fscanf returns the number of input items assigned. This number may
be fewer than the number of parameters requested if there was a matching failure. If there
is an input failure (before the conversion occurs) this function returns EOF.

See .scanf() for a description of this format string. The parameters following the format
string will be set to data according to the specifications of the format string.

Language Objects & Libraries 297

Given the following text file, Weight.dat:
 Crow, Barney 180
 Claus, Santa 306
 Mouse, Mickey 2
the following code:
 var fp = Clib.fopen("WEIGHT.DAT","r");
 var FormatString = "%[,] %*c %s %d\n";
 while (3 == Clib.fscanf(fp, FormatString, LastName, Firstame,
 weight))
 Clib.printf("%s %s weighs %d pounds.\n",
 FirstName, LastName, weight);
 Clib.fclose(fp);
results in the following output:
 Barney Crow weighs 180 pounds.
 Santa Claus weighs 306 pounds.
 Mickey Mouse weighs 2 pounds.
.fseek(filePointer, offset [,int mode])
Set the position of the file pointer of the open file stream filePointer. The parameter
offset is a number indicating how many bytes the new position will be past the starting
point indicated by mode.

The parameter mode can be any of the following predefined values.

SEEK_CUR seek is relative to the current position of the file

SEEK_END position is relative from the end of the file

SEEK_SET position is relative to the beginning of the file

If mode is not supplied then absolute offset from the beginning of file (SEEK_SET) is
assumed. For text files (i.e., not opened in binary mode) the file position may not
correspond exactly to the byte offset in the file.

This method returns zero for success, or non-zero if it cannot set the file pointer to the
indicated position.

.fsetpos(filePointer, pos)
This method sets the current file stream pointer to the value defined by pos, which must
be a value obtained from a previous call to .fgetpos() on the same open file. Returns
zero for success, otherwise returns non-zero and stores an error value in errno.

.ftell(filePointer)
This method sets the position offset of the file pointer of an open file stream from the
beginning of the file. For text files (i.e., not opened in binary mode) the file position may
not correspond exactly to the byte offset in the file. Returns the current value of the file
position indicator, or -1 if there is an error, in which case an error value will be stored in
errno.

.fwrite(sourceVar, varDescription, filePointer)

298 ScriptEase:ISDK/C

This method writes the data in sourceVar to the file indicated by filePointer and
returns the number of elements written. 0 will be returned if a write error occurs; use
.ferror() to get more information about the error. varDescription is a variable that
describes the how and how much data is to be read: if sourceVar is a buffer,
varDescription will be the length of the buffer; if sourceVar is an object,
varDescription must be an object descriptor; and if sourceVar is to hold a single
datum then varDescription must be one of the values listed in the description for
.fread.

The ScriptEase version of fwrite() differs from the standard C version in that the
standard C library is set up for writing arrays of numeric values or structures from
consecutive bytes in memory. This is not necessarily the case in JavaScript.

To write the 16-bit integer "i", the 32-bit float "f", and then 10-byte buffer "buf" into
open file "fp" use the following code.
 if (!Clib.fwrite(i, SWORD16, fp) || !Clib.fwrite(f, FLOAT32,
fp)
 || 10 != fwrite(buf, 10, fp))
 {

 Clib.printf("Error writing to file.\n");
 Clib.abort();

 }

.getc(filePointer)
This method is identical to .fgetc(). It returns the next character in the file
filePointer as a byte (unsigned) converted to an integer. Returns EOF if there is a
read error or if at end-of-file; if there is a read error then ferror() will indicate the error
condition.

.putc(char, stream)
This method writes the character char, converted to a byte, to the output file stream. This
method is identical to .fputc(c, stream). It returns char on success and EOF on a
write error.

.remove(filename)
This method deletes the file specified by filename. Returns zero if successful and
non-zero for failure.

.rename(oldFilename, newFilename)
This method renames oldFilename to newFilename. Both oldFilename and
newFilename are strings. Returns zero if successful and non-zero for failure.

.rewind(fp)
This method sets the file cursor to the beginning of file. This call is identical to
.fseek(stream, 0, SEEK_SET) except that it also clears the error indicator for this
stream.

Language Objects & Libraries 299

.tmpfile()
This method returns the file variable of a temporary binary file that will automatically be
removed when it is closed or when the program exits. null will be returned if the
function fails.

.tmpnam([&string])
This method creates a string that is a valid file name that is not the same as the name of
any existing file and not the same as any filename returned by this function during
execution of this program. If a string is supplied it will be set to the string that will be
returned by this function.

.ungetc(char, stream)
This method pushes a character char back into an input stream. When char is put back
it is converted to a byte and is again in an input stream for subsequent retrieval. Only one
character is guaranteed to be pushed back. The method returns char on success, else
EOF on failure.

Directory
.chdir(dirpath)
This method changes the directory for a script from its current directory to the directory
specified in the parameter dirpath. The specified directory may be an absolute or
relative path specification.

.getcwd()
This method returns the complete path of the current working directory for a script.

.flock(stream,mode)
This method locks or unlocks a file for the simultaneous use of multiple processes.
stream is the name of a file to use for locking. mode may be LOCK_EX, LOCK_SH,
LOCK_UN, or LOCK_NB.

.mkdir(dirpath)
This method creates the directory specified in the parameter dirpath. The specified
directory may be an absolute or relative path specification.

.rmdir(dirpath)
This method removes the directory specified by the parameter dirpath.

Sorting

300 ScriptEase:ISDK/C

.bsearch(key, arrayToSort, [elementCount,]
compareFunction)
This method looks for an array variable that matches key, returning it if found and null
if not. It will only search through positive array members (i.e., array members with
negative indices will be ignored). compareFunction must receive the key variable as its
first argument and a variable from the array as its second argument. If elementCount is
not supplied then will search the entire array. elementCount is limited to 64K for 16-bit
version of ScriptEase.

The following example demonstrates the use of .qsort() and bsearch() to locate a
name and related item in a list:
 // create array of names and favorite food
 list =
 {

 { "Brent", "salad" },
 { "Laura", "cheese" },
 { "Alby", "sugar" },
 { "Josh", "anything" },
 { "Aiko", "cats" },
 { "Quinn", "anything from the garbage" }

 };

 // sort the list
 Clib.qsort(list, ListCompareFunction);
 Clib.Key[0] = "brent";
 // search for the name Brent in the list
 Found = bsearch(Key, list, ListCompareFunction);
 // display name, or not found
 if (Found != null)

 Clib.printf("%s's favorite food is %s\n", Found[0][0],
 Found[0][1])

 else
 Clib.puts("Could not find name in list.");

 function ListCompareFunction(Item1, Item2)
 {

 return Clib.strcmpi(Item1[0], Item2[0]);
 }

.qsort(array, [elementCount,] CompareFunction)
This method sorts elements in an array, starting from index 0 to elementCount-1. If
elementCount is not supplied then will sort the entire array. This method differs from
the Array.sort() method in that it can sort automatically-created arrays, whereas
Array.sort() only works with arrays explicitly created with a new Array statement.

ElementCount is limited to 64K

The following code would print a list of colors sorted reverse-alphabetically and
case-insensitive:

Language Objects & Libraries 301

 // initialize an array of colors
 var colors = { "yellow", "Blue", "GREEN", "purple", "RED",
 "BLACK", "white", "orange" };
 // sort the list using qsort and our ColorSorter routine
 Clib.qsort(colors,"ReverseColorSorter");
 // display the sorted colors
 for (var i = 0; i <= getArrayLength(colors); i++)

 Clib.puts(colors[i]);

 function ReverseColorSorter(color1,color2)
 // do a simple case insensitive string
 // comparison, and reverse the results too

 {
 var CompareResult = Clib.stricmp(color1,color2)
 return(-CompareResult);

 }

The output of the above code would be:
 yellow
 white
 RED
 purple
 orange
 GREEN
 Blue
 BLACK

Environment variables
.getenv([variableName])
If the parameter variableName is supplied, this method returns the value of a similarly
named environment variable as a string if the variable exists, and null if VariableName
does not exist. If no name is supplied then returns an array of all environment variable
names, ending with a null element.

The following code would print the existing environment variables, in "EVAR=Value"
format, sorted alphabetically.
 // get array of all environment variable names
 var EnvList = Clib.getenv();
 // sort array alphabetically
 Clib.qsort(EnvList, getArrayLength(EnvList)-1, stricmp);
 // display each element in ENV=VALUE format
 for (var lIdx = 0; EnvList[lIdx]; lIdx++)

 Clib.printf("%s=%s\n",EnvList[lIdx],
 Clib.getenv(EnvList[lIdx]));

.putenv(varName, stringValue)
This method sets the environment variable varName to the value of stringValue. If
stringValue is null then varName is removed from the environment. For those operating

302 ScriptEase:ISDK/C

systems for which ScriptEase can alter the parent environment (DOS, or OS/2 when
invoked with SESet.cmd or using .eSet()) the variable setting will still be valid when
ScriptEase exits; otherwise the variable change applies only to the ScriptEase code and to
child processes of the ScriptEase program. Returns -1 if there is an error, else 0.

Character classification
JavaScript does not have a true character type. For the character classification routines, a
char is actually a one character string. Thus, actual programming usage is very much like
C. For example, in the following fragment both .isalnum() statements work properly.
 var t = Clib.isalnum('a');
 Screen.writeln(t);

 var s = 'a';
 var t = Clib.isalnum(s);
 Screen.writeln(t);
This fragment displays the following.
 true
 true
In the following fragment both .isalnum() statements cause errors since the arguments
to them are strings with more than one character.
 var t = Clib.isalnum('ab');
 Screen.writeln(t);

 var s = 'ab';
 var t = Clib.isalnum(s);
 Screen.writeln(t);
All character classification methods return booleans: true or false.

.isalnum(char)
Returns true if char is a character in one of the following sets: A-Z, a-z, or 0-9.

.isalpha(char)
Returns true if char is a alphabetic character in one of the following sets of characters:
A-Z or a-z.

.isascii(char)
Returns true if char is an ASCII character in the following set of codes: 0-127.

.iscntrl(char)
Returns true if char is a control character in the set of ASCII characters. Control
characters are in one of the following sets of codes: 0-31 or 127.

.isdigit(char)
Returns true if char is a decimal digit in the following set of characters: 0-9.

Language Objects & Libraries 303

.isgraph(char)
Returns true if char is a printable character excluding the space character, code 32.

.islower(char)
Returns true if char is a lowercase character in the following set of characters: a-z.

.isprint(char)
Returns true if char is a printable character in the following set of codes: 32-126.

.ispunct(char)
Returns true if char is a punctuation character in one of the following sets of codes:
32-47, 58-63, 91-96, or 123-126.

.isspace(char)
Returns true if char is a white space character, that is, one of the following codes: 9,
10, 11, 12, 13, or 32 (horizontal tab, new line, vertical tab, form feed, carriage return, or
space).

.isupper(char)
Returns true if char is an uppercase character in the following set of characters: A-Z.

.isxdigit(string)
Returns true if char is a hexadecimal digit in one of the following sets of characters: 0-
9, A-Z, or a-z.

String manipulation
.rsprintf(formatString...)
This method returns a formatted string. It is exactly like .printf(), except that the string
is returned instead of printed. For example, if in a script you had a line:
 Clib.printf("%s has seen %s %d times.\n", name, movie,
 timesSeen);
and you wanted to pass the resulting string as a parameter to a function, you could do it
like as follows.
 func(Clib.rsprintf("%s has seen %s %d times.\n", name, movie,
 timesSeen));
The following two lines of code achieve the same results, that is, create a string named
word that contains the string "Who is #1?".
 word = rsprintf("Who is #%d?", 3-2);
 sprintf(word, "Who is #%d?", 3-2);

.rvsprintf(formatstring, valist)
This method returns formatted output using the variable argument list represented by the

304 ScriptEase:ISDK/C

parameter valist. This method is similar to .sprintf() except that it takes a variable
argument list and returns a formatted string based on the arguments, rather than storing it
in a string buffer. See .sprintf() and .va_start() for more information. The method
.rvsprintf() returns a string specified by format String on success, else EOF on
error.

.sscanf(formatString,...)
This method reads input from the standard input stream (the keyboard unless some other
file has been redirected as stdin) and stores the data read in the variables provided as
parameters following the format String. The data will be stored according to the
character combinations in format String indicating how the input data is to be read
and stored. This method is identical to calling .fscanf() with stdin as the first
parameter. It returns the number of input items assigned; this number may be fewer than
the number of parameters requested if there was a matching failure. If there was a
conversion failure, EOF will be returned.

format String specifies the admissible input sequences, and how the input is to be
converted to be assigned to the variable number of arguments passed to this function (in
Windows, the input will not be read until it has been entered by hitting return).

Characters from input are matched against the characters of the format String until a
percent character, %, is reached. % indicates that a value is to be read and stored to
subsequent parameters following format string. Each subsequent parameter after
format String gets the next parsed value taken from the next parameter in the list
following format.

A parameter specification takes this form (angled brackets indicate required fields and
square brackets indicate optional fields):
 %[*][width]<type>
Where:
* Suppress assigning this value to any parameter

width maximum number of characters to read; fewer will be read if whitespace or
nonconvertible character

type may be:
d,D,i,I signed integer

u,U unsigned integer

o,O octal integer

x,X hexadecimal integer

f,e,E,g,G floating point number

c character; if width was specified this will be an array of characters

s string

[abc] string consisting of all characters within brackets; A-Z

Language Objects & Libraries 305

represents range "A" to "Z"

[^abc] string consisting of all character NOT within brackets

Returns EOF if input failure before any conversion occurs; otherwise it returns the
number of variables assigned data.

.sprintf(string, formatString...)
This method writes output to the string variable specified by buffer according to
formatString, and returns the number of characters written into buffer or EOF if there
was an error. formatString can contain character combinations indicating how
following parameters may be written. string need not be previously defined; it will be
created large enough to hold the result. See printf() for a description of
formatString.

The format string may contain character combinations indicating how following
parameters are to be treated. Characters are printed as read to standard output until a
percent character, %, is reached. % indicates that a value is to be printed from the
parameters following the format string. Each subsequent parameter specification takes
from the next parameter in the list following format (angled brackets represent required
fields, while square brackets represent optional fields).
 %[flags][width][.precision]<type>

flags may be:
- Left justification in the field with blank padding; else right

justifies with zero or blank padding
+ Force numbers to begin with a plus (+) or minus (-)
blank Negative values begin with a minus (-); positive values begin

with a blank
Convert using the following alternate form, depending on

output data type:

c,s,d,i,u No effect
o 0 (zero) is prepended to non-zero output
x,X 0x, or 0X, are prepended to output
f,e,E Output includes decimal even if no digits follow decimal
g,G same as e or E but trailing zeros are not removed
width may be:
n (n is a number e.g., 14) At least n characters are output,

padded with blanks
0n At least n characters are output, padded on the left with zeros
* The next value in the argument list is an integer specifying the

output width

306 ScriptEase:ISDK/C

.precision If precision is specified, then it must begin with a period (.), and may
be as follows:

.0 For floating point type, no decimal point is output

.n n characters or n decimal places (floating point) are output

.* The next value in the argument list is an integer specifying the
precision width.

type may be:
d,i signed integer
u unsigned integer
o octal integer
x hexadecimal integer with 0-9 and a, b, c, d, e, f
X hexadecimal integer with 0-9 and A, B, C, D, E, F
f floating point of the form [-]dddd.dddd
e floating point of the form [-]d.ddde+dd or [-]d.ddde-dd
E floating point of the form [-]d.dddE+dd or [-]d.dddE-dd
g floating point of f or e type, depending on precision
G floating point of f or e type, depending on precision
c character ('a', 'b', '8', e.g.)
s string

To include the % character as a character in the format string, you must use two % together
(%%) to prevent the computer from trying to interpret it as one of the above.

Each of the following lines shows a sprintf example followed by the resulting string.
 Clib.sprintf(testString, "I count: %d %d %d.",1,2,3)
 "I count: 1 2 3"
 var a = 1;
 var b = 2;
 Clib.sprintf(testString, "%d %d %d",a, b, a+b)
 "1 2 3"

.strchr(string, char)
This method searches the parameter string for the character char. It returns a variable
indicating the first occurrence of char in string, else it returns null if char is not
found in string.

The following code fragment:
 var str = "I can't stand soggy cereal."
 var substr = Clib.strchr(str, 's');
 Clib.printf("str = %s\n", str);
 Screen.writeln("substr = " + substr);
results in the following output.
 str = I can't stand soggy cereal.

Language Objects & Libraries 307

 substr = stand soggy cereal.

.strcmpi(string1, string2)
This method makes a case-insensitive comparison of the bytes of string1 against
string2 until there is a mismatch or the terminating null byte is reached.

Returns result of comparison, which will be:
< 0 if string1 is less than string2
= 0 if string1 is the same as string2
> 0 if string1 is greater than string2

.strcspn(string, charSet))
This method searches the parameter string for any of the characters in the string
charSet , and returns the offset of that character. If no matching characters are found, it
returns the length of the string. This method is similar to .strpbrk(), except that
strpbrk returns the string beginning at the first character found, while strcspn returns
the offset number for that character.

The following fragment demonstrates the difference between .strcspn() and .strpbrk().
 var string="There's more than one way to skin a cat.";
 var rStrpbrk = Clib.strpbrk(string, "dxb8w9k!");
 var rStrcspn = Clib.strcspn(string, "dxb8w9k!");
 Clib.printf("The string is: %s\n", string);
 Clib.printf("\nstrpbrk returns a string: %s\n", rStrpbrk);
 Clib.printf("\nstrcspn returns an integer: %d\n", rStrcspn);

And results in the following output:
 The string is: There's more than one way to skin a cat.
 strpbrk returns a string: way to skin a cat.
 strcspn returns an integer: 22

.stricmp(string1, string2)
Same as strcmpi.

.strncat(&destString, sourceString, MaxLen)
This method appends up to MaxLen characters of sourceString string onto the end of
destString. Characters following a null-byte in sourceString are not copied. The
destString array is made big enough to hold
Clib.min(Clib.strlen(sourceString), MaxLen). The value of destString is
returned.

308 ScriptEase:ISDK/C

.strncmp(string1, string2, MaxLen)
This method compares up to MaxLen bytes of string1 against string2 until there is a
mismatch or reach the end of a string. The comparison ends when MaxLen bytes have
been compared or when a terminating null-byte has been compared, whichever comes
first. Returns result of comparison, which will be:

< 0 if string1 is less than string2
= 0 if string1 is the same as string2
> 0 if string1 is greater than string2

.strncmpi(string1, string2, MaxLen)
This method compares up to MaxLen bytes of string1 against string2 until there is a
mismatch or reach the end of a string. This method does a case-insensitive comparison,
so that "A" and "a" are considered to be the same. The comparison ends when MaxLen
bytes have been compared or when an end of string has been reached, whichever comes
first. Returns result of comparison, which will be:

< 0 if string1 is less than string2
= 0 if string1 is the same as string2
> 0 if string1 is greater than string2

.strncpy(&destString, sourceString, MaxLen)
This method copies Clib.min(Clib.strlen(sourceString)+1, MaxLen)
characters from sourceString to destString. If destString is not already defined
then this defines it as a string. destString is null-padded if MaxLen is greater than
the length of sourceString, and a null-byte is appended to destString if MaxLen
bytes are copied. It is safe to copy from one part of a string to another part of the same
string. Returns the value of dest; that is, a variable into the dest array based at
dest[0].

.strnicmp(string1, string2, MaxLen)
The method .strnicmp() is the same as .strncmpi(). Please see .strncmpi() for more
information

.strpbrk(string, charSet)
This method searches string for any of the characters in charSet, and returns the
string based at the found character. Returns null if no character from charSet is found.

See .strcspn() for an example using this function.

.strrchr(string, char)
This method searches string for the last occurrence of char. The search is in the
reverse direction, from the right, for char in string. The method returns a variable
indicating the first occurrence of char in string, else it returns null if char is not
found in string.

Language Objects & Libraries 309

The following code:
 var str = "I can't stand soggy cereal."
 var substr = Clib.strrchr(str, 's');
 Clib.printf("str = %s\n", str);
 Screen.writeln("substr = " + substr);
Results in the following output.
 str = I can't stand soggy cereal.
 substr = soggy cereal.

.strspn(string, charSet)
This method searches string for any characters that are not in charSet, and returns the
offset of the first instance of such a character. If all characters in string are also in
charSet will return the length of string.

.strstr(string1, string2)
This method searches string1, starting at string1[0], for the first occurrence of
string2. The search is case-sensitive. The method returns a variable indicating the
beginning of the first occurrence of string2 in string1, else it returns null if
string2 is not found in string1.

The following script:
 cFunction main()
 {

 var Phrase = "To be or not to be? Beep beep!";
 do

 {
 Screen.writeln(Phrase);
 Phrase = Clib.strstr(Phrase + 1, "be");

 } while (Phrase != null);
 }
 results in the following output.
 To be or not to be? Beep beep!
 be or not to be? Beep beep!
 be? Beep beep!
 beep!

.strstri(string, substring)
This method searches string, starting at string[0], for the first occurrence of
substring. Comparison is case-sensitive. This is a case-insensitive version of the
String.substring() method. Returns null if substring is not found anywhere in
string; otherwise returns variable for the string array based at the first offset
matching substring.

.strtok(&sourceString, delimiterString)
sourceString is a string that consists of text tokens (substrings) separated by delimiters
found in delimiterString. Bytes of sourceString may be altered during the first

310 ScriptEase:ISDK/C

and subsequent calls to strtok().

On the first call to strtok(), sourceString points to the string to tokenize and
delimiterString is a list of characters which are used to separate tokens in source.
This first call returns a variable pointing to the sourceString array and based at the
first character of the first token in sourceString. On subsequent calls, the first
argument is null and strtok will continue through sourceString returning
subsequent tokens.

The initial var must remain valid throughout following calls with null as the initial var.
If you change the string in any way, a following call to strtok() must be of the first
syntax form (i.e., the new string must be passed as a first parameter). Returns null if
there are no more tokens; otherwise returns sourceString array variable based at the next
token in sourceString.

The following code:
 var source = " Little John,,,Eats ?? crackers;;;! ";
 var token = Clib.strtok(source,", ");
 while(null != token)
 {

 Clib.puts(token);
 token = Clib.strtok(null,";?, ");

 }
produces the following list of tokens.
 Little
 John
 Eats
 crackers
 !

.toascii(char)
This method translates the parameter char to ASCII format, i.e., to seven bits.

The translation is done by clearing all but the lowest 7 bits. The return is char converted
to ASCII.

.vsprintf(&buffer, formatstring, valist)
This method puts formatted output into buffer, a string, using a variable number of
arguments, specified by valist. The parameter formatstring specifies that format of
the data put into buffer. This method is similar to .sprintf() except that it takes a
variable argument list. See sprintf() and .va_start() for more information.

The method returns the number of characters written to buffer on success, else EOF on
error.

Memory manipulation

Language Objects & Libraries 311

.memchr(buf, char[, size])
This method searches buf, a buffer, and returns a variable indicating the first occurrence
of byte char. If the parameter size is not specified, then the method searches the entire
buf from element zero. The return is null if char is not found in array, else the return is a
buffer which has its offset 0 nt the first char in buf.

.memcmp(buf1, buf2[, len])
This method compares the first len bytes of buf1 and buf2. If the parameter len is not
specified, then len is the smaller of the lengths of buf1 and buf2. If len is specified and
one of the buffers is shorter than the specified length, then ScriptEase treats length of the
shorter buffer as being len.

The method returns the result of a comparison. The return conforms to one of the
following.

< 0 if buf1 is less than buf2
= 0 if buf1 is the same as buf2 for len bytes
> 0 if buf1 is greater than buf2

.memcpy(&DestBuf, SrcBuf[, len])
This method copies the number of bytes specified by len from ScrBuf to DestBuf. If
DestBuf is not already defined, then it is defined as a buffer. If the parameter len is not
supplied, then all of the bytes in SrcBuf are copied to DestBuf.

ScriptEase ensures protection from data overwrite, so in ScriptEase the .memcpy()
method is the same as .memmove().

.memmove(DestBuf, SrcBuf[, len])
ScriptEase ensures protection from data overwrite, so in ScriptEase the .memmove()
method is the same as .memcpy().

.memset(buf, char[, len])
This method sets the first number, as specified by len, of bytes of buf to character char.
If buf is not already defined, then it is defined as a byte buffer of size len. If the length
of buf is less than the number of bytes specified by len, then buf is grown to be big
enough for len bytes. If the parameter len is not supplied, then len is the size of buf,
starting at index 0.

Math
.cosh(x)
This method returns the hyperbolic cosine of x.

.div(numerator, denominator)

312 ScriptEase:ISDK/C

This method performs integer division and returns a quotient and remainder in a
structure. Since integers and long integers are the same in ScriptEase, .div() is the same
as .ldiv(). The value returned is a structure with the following elements, which are the
result of dividing numerator by denominator.

.quot quotient

.rem remainder

.fabs(x)
This method returns the absolute, non-negative, value of a float x.

.frexp(x, exponent)
This method breaks x into a normalized mantissa between 0.5 and 1.0 and calculates an
integer exponent of 2 such that x == mantissa * 2 ^ exponent. The return is
normalized mantissa between 0.5 and 1.0, or 0.

.labs(x)
This method returns the absolute, non-negative, value of an integer.
Since integers and long integers are the same in ScriptEase, .labs() is the same as .abs().

.ldexp(mantissa, exponent)
This method is the inverse of .frexp() and calculates a floating point number from the
following equation:
mantissa * 2 ^ exponent.
The return is the result of the previous calculation

.ldiv(numerator, denominator)
This method performs integer division and returns a quotient and remainder in a
structure. Since integers and long integers are the same in ScriptEase, .ldiv() is the same
as .div(). The value returned is a structure with the following elements, which are the
result of dividing numerator by denominator.

.quot quotient

.rem remainder

.modf(x, i)
This method splits a floating point number x into integer and fractional parts, where the
integer and fraction both have the same sign as x. The method sets the parameter i to the
integer part of x and returns the fractional part of x.

.rand()
This method generates a random number between 0 and RAND_MAX, inclusive. The
sequence of pseudo-random numbers is affected by the initial generator seed and by
earlier calls to .rand(). See .srand() for information about the initial generator seed.
This method returns pseudo-random number between 0 and RAND_MAX, inclusive.

.sinh(x)

Language Objects & Libraries 313

This method returns the hyperbolic sine of the float x

.srand[seed]
This method initializes a random number generator using the parameter seed. If seed is
not supplied, then a random seed is generated in an a manner that is specific to different
operating systems.

.tanh(x)
This method calculates and returns the hyperbolic tangent of the parameter x, a float.

Variable argument lists
.va_arg([valist] (,) [offset])
The method .va_arg() provides an alternate way to retrieve a function's parameters. It's
most often used when the number of parameters passed to the function is not constant.
This method covers the same territory as the Function.arguments[] property and is
provided for those used to C's functions for handling variable arguments.

When called with no parameters, .va_arg returns the number of parameters passed to
the current function. If an offset is supplied, .va_arg returns the input variable at index:
offset. .va_arg(0) is the first parameter passed, .va_arg(1) the second, etc. It is a
fatal error to retrieve an argument offset beyond the number of parameters in the function
or the valist.

The valist form (with an optional offset) uses a valist variable that has been previously
initialized with va_start(). Each call to va_arg(valist) returns the next parameter
passed to the function. If an offset is passed in the variable at that offset from the original
starting place of the valist will be returned.

The following script:
 function main()
 {

 lips(0, 1, 2, 3, 4)
 }

 lips()
 {

 Clib.va_start(valist)
 Clib.printf("va_arg(0) = %d\n", Clib.va_arg(0));
 Clib.printf("va_arg(1) = %d\n", Clib.va_arg(1));
 Clib.printf("va_arg(valist) = %d\n",

Clib.va_arg(valist));
 Clib.printf("va_arg(valist, 2) = %d\n",

Clib.va_arg(valist, 2));
 Clib.printf("va_arg(valist, 2) = %d\n",

Clib.va_arg(valist, 2));
 Clib.printf("va_arg(valist) = %d\n",

Clib.va_arg(valist));
 Clib.getch()

 }

314 ScriptEase:ISDK/C

produces the following output:
 va_arg(0) = 0
 va_arg(1) = 1
 va_arg(valist) = 0
 va_arg(valist, 2) = 3
 va_arg(valist, 2) = 3
 va_arg(valist) = 1

.va_start(va_list[, InputVar])
This method initializes va_list for a function with variable or unknown number of
arguments. After this call, may be used in further calls to va_arg() to get the next
argument(s) passed to the function.

The parameter InputVar must be one of the parameters defined on the function line; the
first argument returned by the first call to va_arg() will be the variable passed after
InputVar. If InputVar is not provided, then the first parameter passed to the function
will be the first one returned by va_arg(va_list).

Returns the number of valid calls to va_arg(va_list), i.e., how many variables are
available in this va_list.

The following example uses and accepts a variable number of strings and concatenates
them all together.
 function MultiStrcat(Result,InitialString);
 // Append any number of strings to InitialString.
 // e.g., MultiStrcat(Result,"C:\\","FOO",".","CMD")
 {

 Clib.strcpy(Result,""); // initialize the result;
 var Count = Clib.va_start(ArgList, InitialString);
 for (var i = 0; i < Count; i++)

 Clib.strcat(Result, va_arg(ArgList));
 }

.vfprintf(filePointer, formatString, va_list)
This method formats a string with a variable number of arguments and prints it to the file
specified by filePointer. It returns the number of characters written, or a negative
number if there was an output error. See .fprintf() and .sprintf() for more details.

.vfscanf(filePointer, formatString, va_list)
This method is similar to .fscanf() except that it takes a variable argument list (see
.va_start()). See .fscanf() for more details.

 .vsscanf(buffer, format, valist)
This method is similar to .sscanf() except that it takes a variable argument list (see
.va_start()). The parameters following the format string will be assigned values
according to the specifications of the format string.

Language Objects & Libraries 315

The function returns the number of input items assigned. This number may be fewer than
the number of parameters requested if there was a matching failure. See .sscanf() for
more details.

316 ScriptEase:ISDK/C

Redundant functions in the Clib object
The Clib Object includes the functions from the C standard library. As a result, some of
the methods in the Clib Object overlap methods in JavaScript. In most cases, the newer
JavaScript methods should be preferred over the older C functions. However, there are
times, such as when working with many cfunctions or with string routines that expect
null terminated strings, that the Clib methods make more sense and are more consistent
in a section of a script.

The Clib methods list below are paired with equivalent methods in JavaScript. Since
ScriptEase, JavaScript and the ECMAScript standard are developing and growing,
generally, a programmer should favor the JavaScript methods over equivalent methods in
the Clib object.

Clib method Description JavaScript method

.abs() Calculate absolute value Math.abs()

.acos() Calculate the arc cosine. Math.acos()

.asin() Calculate the arc sine. Math.asin()

.atan() Calculate the arc tangent. Math.atan()

.atan2() Calculate the arc tangent of a fraction Math.atan2()

.atof() Convert string to float. Automatic conversion

.atoi() Convert string to integer. Automatic conversion

.atol() Convert string to long. Automatic conversion

.ceil() Round up number to nearest integer. Math.ceil()

.cos() Calculate the cosine Math.cos()

.exp() Compute the exponential function. Math.exp()

.floor() Round number down to nearest
integer.

Math.floor()

.fmod() Calculate remainder. % operator, modulo

.log() Calculate natural logarithm Math.log()

.max() Return the largest of one or more
values.

Math.max()

.min() Return the smallest of one or more
values.

Math.min()

.pow() Calculates x to the power of y Math.pow()

.sin() Calculate the sine. Math.sin()

.sqrt() Calculate the square root Math.sqrt()

Language Objects & Libraries 317

Clib method Description JavaScript method

.strcat() Append one string to another + operator

.strcmp() Compare two strings == operator

.strcpy() Copy a string = operator

.strlen() Get length of string String.length

.strlwr() Convert string to lower case. String.toLowerCase

.strtod() Convert string to decimal Automatic conversion

.strtol() Convert string to long Automatic conversion

.strupr() Convert string to upper case. String.toUpperCase

.tan() Calculate the tangent Math.tan()

.tolower() Convert character to lower case. String.toLowerCase

.toupper() Convert character to upper case. String.toUpperCase

.va_end() End of va_list. This method does
nothing and may be omitted.

The Blob Object
This section describes BLObs, Binary Large Objects.

Blob.get()
Syntax
byte Blob.get(BLOb BlobVar, int offset, int DataType)
int Blob.get(BLOb BlobVar, int offset, int DataType)
float Blob.get(BLOb BlobVar, int offset, int DataType)
byte[] Blob.get(BLOb BlobVar, int offset, int bufferLen)
object Blob.get(BLOb BlobVar, int offset,BlobDescriptor,

DataDefinition)

Description
This method reads data from a specified location of a Binary Large Object, a BLOb and
is the companion function to Blob.put(). The parameter BlobVar specifies the BLOb
to use. The parameter offset specifies where in the BLOb to get data. The last parameter
specifies the format of the data in the BLOb and, hence, determines the type of the value
returned which is the data read from the BLOb.

Valid values for DataType are:

UWORD8, SWORD8, UWORD16, SWORD16, UWORD24, SWORD24, UWORD32,
SWORD32, FLOAT32, FLOAT64, or FLOAT80

See Clib.fread() for more information on these DataType values.

318 ScriptEase:ISDK/C

Blob.put()
Syntax
int Blob.put(BLOb BlobVar[, int offset], Var v, int
 DataType)
int Blob.put(BLOb BlobVar[, int offset], byte[] buffer,
 bufferLen)
int Blob.put(BLOb BlobVar[, int offset], object SrcStruct,
 blobdescriptor DataDefinition)

Description
This method puts data into a specified location of a Binary Large Object, BLOb and,
along with Blob.get(), allows for direct access to memory within a var. The contents
of such a variable may be viewed as a packed structure. Data can be placed at any
location within a BLOb. The parameter BlobVar specifies the BLOb to use. The
parameter offset specifies where, in the BLOb, to write data. The third parameter is the
data to write. The last parameter specifies the format of the data in the BLOb.

Blob.put() returns the byte offset for the next byte following the section where data
was just put. If the data is put at the end of the BLOb, then the return is equivalent to the
size of the BLOb.

If offset is not supplied, then the data is put at the end of the BLOb, or at offset 0 if the
BLOb is not yet defined.

The data in v is converted to the specified DataType and then copied into the bytes
specified by offset.

If DataType is not the length of a byte buffer, then it must be one of these types:

UWORD8, SWORD8, UWORD16, SWORD16, UWORD24, SWORD24, UWORD32,
SWORD32, FLOAT32, FLOAT64, or FLOAT80

See Clib.fread() for more information on these DataType values.

Language Objects & Libraries 319

Example
If you were sending a pointer to data in an external C library and knew that the library
expected the data in a packed C structure of the form:
 struct foo
 {

 signed char a;
 unsigned int b;
 double c;

 };
and if you were building this structure from three corresponding variables, then such a
building function might look like the following:
 function BuildFooBlob(a, b, c)
 {

 var offset = Blob.put(foo, 0, a, SWORD8);
 offset = Blob.put(foo, offset, b, UWORD16);
 Blob.put(foo, offset, c, FLOAT64);
 return foo;

 }
or, if an offset were not supplied:
 functionBuildFooBlob(a, b, c)
 {

 Blob.put(foo, a, SWORD8);
 Blob.put(foo, b, UWORD16);
 Blob.put(foo, c, FLOAT64);
 return foo;

 }

Blob.size()
Syntax
int Blob.size(BLOb BlobVar[, SetSize])
int Blob.size(int DataType)
int Blob.size(int bufferLen)
int Blob.size(blobDescriptor Definition)

Description
This method determines the size of a Binary Large Object, BLOb. The parameter
BlobVar specifies the BLOb to use. If SetSize is provided, then the BLOb BlobVar is
altered to this size or created with this size.

If DataType, bufferLen, or Definition are used, Blob.size() returns the size of a
BLOb that would contain the type of data item used in by Blob.get() or Blob.put().
In these cases, these parameters specify the type to be used for converting ScriptEase data
to and from a BLOb.

Blob.size returns the size of a BLOb which is the number of bytes in BlobVar. If
SetSize is supplied, then the return is SetSize.

320 ScriptEase:ISDK/C

The blobDescriptor Object
When an Object needs to be sent to a process other than the ScriptEase interpreter, such
as to a Windows API function, a blobDescriptor Object must be created that describes the
order and type of data in the Object. This description tells how the properties of the
Object are stored in memory and is used with functions like Clib.fread() and
SElib.dynamicLink().

A blobDescriptor has the same data properties as the Object it describes. Each property
must be assigned a value that specifies how much memory is required for the data held by
that property. Consider the following Object.
 Rectangle(width, height)
 {

 this.width = width;
 this.height = height;

 }
The following code creates a blobDescriptor object that describes the Rectangle Object:
 var bd = new blobDescriptor();

 bd.width = UWORD32;
 bd.height = UWORD32;
You can now pass bd as a blobDescriptor parameter to functions that require one. The
values assigned to properties will depend on what the receiving function expects. In the
example above, the function called expects to receive an Object that contains two 32-bit
words or data values. If you write a blobDescriptor for a function that expects to receive
an Object containing two 16-bit words, assign the two properties a value of UWORD16.

The following values may be used for blobDescriptors.
UWORD8 Stored as a byte
SWORD8 Stored as an integer
UWORD16 Stored as an integer
SWORD16 Stored as an integer
UWORD24 Stored as an integer
SWORD24 Stored as an integer
UWORD32 Stored as an integer
SWORD32 Stored as an integer
FLOAT32 Stored as a float
FLOAT64 Stored as a float
FLOAT80 Stored as a float (not available in Win32)
STRINGHOLDER Used to indicate that a value that is assigned a string by the function to
which it is passed. It allocates 10,000 bytes to contain the string, and then truncates this
length to the appropriate size, removes any terminating null characters, and initializes
the properties of the string.

Language Objects & Libraries 321

If the blobDescriptor describes an Object property that is a string, the corresponding
property should be assigned a numeric value that is larger than the length of the longest
string the property may hold. Object methods usually may be omitted from a
blobDescriptor.

DOS / WIN16
.address(segment, offset)
DOS, 16-bit Windows

This method converts the segment and offset into a single segment:offset address. It
returns a segment:offset address suitable for use in calls such as .peek() and .poke().

.asm(byte[] buf[, ax[, bx[, cx[, dx[, si[, di[, ds[, es]]]]]]]])

DOS, 16-bit Windows, OS/2

This function sets the registers and executes the code contained in buf, which must be a
buffer containing assembly language code. The optional variables ax, bx, etc. are the
values to be put into the registers before executing the code; in 16-bit systems they will
be 16-bit values, and 32-bit values in 32 bit systems.

asm() makes a far call to whatever routine that you have coded into buf. ax, bx, cx, dx,
si, di, ds, and es are optional; if some or all are supplied, then the ax, bx, cx, etc... will
be set to these values when the code at buf is called. The code in buf will be executed
with a far call to that address. The ScriptEase calling code will restore ALL registers
except ss, sp, ax, bx, cx, and dx. If es or ds are supplied, then they must be valid values
or 0 to use the current value. This function returns a long value for whatever is in DX:AX
when buf returns.

Warning: Please read the note concerning this function at the beginning of this section.

.inport(portID)
This method reads a byte from the hardware port indicated by portID.

.inportw(portID)
This method reads a word (16 bit) from the hardware port indicated by portID. The value
read is unsigned (not negative).

.outport(int portID, byte value)
This method writes a byte value to the hardware port indicated by portID.

.outportw(int portID, int value)
This method writes a word (16-bit) value to the hardware port indicated by portID.

322 ScriptEase:ISDK/C

.interrupt(Interrupt, RegIn [, RegOut])
DOS, 16-bit Windows

Set registers, call 80x86 interrupt function, and then get the return values of the registers.
RegIn and RegOut are objects containing properties corresponding to the registers on an
80x86. On input, the properties that are defined will be set, and those that are not defined
will be set to zero, with the exception of the segment registers (ES & DS) which retain
their current values if not explicitly specified. The possible defined input values are AX,
AH, AL, BX, BH, BL, CX, CH, CL, DX, DH, DL, BP, SI, DI, DS, ES. All Fields of the
Output reg structure are the same, with the addition of the FLAGS member, and all are
set before returning. If RegOut is not supplied, then the return registers and FLAGS
register will be set for RegIn on return from the interrupt call.

Since many interrupts set the carry flag for error, this function will return False if the
carry flag is set, else returns true.

.offset(buffer)
DOS, 16-bit Windows

This method, along with its companion method .segment(), breaks a buffer or far
pointer into its segment and offset components.

.segment(buf)
DOS, 16-bit Windows

This method and its companion method .offset() return the segment and offset of the
data at index 0 of buf, which must be a buffer. The buffer must be already big enough for
whatever purpose it is used, and no changes may be made to the size of the buffer after
these values are determined because changing the size of the buffer might change its
absolute address.

If the address versions are used, then address is assumed to be a far pointer to data, and
segment will be the high word while address will be the low word. See . address() for
converting segment and offset into a single address.

Return segment or offset of buffer such that 8086 would recognize the address
segment::buffer as pointing to the first byte of buf.

Language Objects & Libraries 323

OS/2
.eSet(fileSpec)
This method writes new environment variable settings to a file, returning true if it is
successful and false if it is unable to write the settings to the file.

The parameter fileSpec is the name of the file to create, if necessary, and write to.
When a call is made to .putenv(), as many statements of the form "SET VAR=Value"
as necessary are written to the file so that ScriptEase always has an updated version of the
variables. Note that this operation is unnecessary if the SE_ESET environment variable is
set. In this case, the call to .eSet(%SE_ESET%) is automatically generated as the last
statement before a smooth exit from ScriptEase.

.inport(portID)
This method reads a byte from the hardware port indicated by portID.

.inportw(portID)
This method reads a word (16 bit) from the hardware port indicated by portID. The value
read is unsigned (not negative).

.outport(int portID, byte value)
This method writes a byte value to the hardware port indicated by portID.

.outportw(int portID, int value)
This method writes a word (16-bit) value to the hardware port indicated by portID.

.pmDynamicLink()
This method is identical to .dynamicLink() except that .pmDynamicLink passes DLL
calls through the Seos2pm.exe gateway program. Seos2.exe is not a PM program but
Seos2pm.exe is, so Seos2pm.exe can make these calls for Seos2.exe. Addresses and
buffers are automatically transferred and shared between Seos2.exe and Seos2pm.exe, so
in most cases your code does not need to concern itself with memory protection. The
exception to this is if one of the arguments to .pmDynamicLink() contains or will
receive a pointer. In this case you need to put or get that data explicitly by using
.pmPeek() and .pmPoke() instead of the usual .peek() and .poke() routines.

.pmInfo()
See the SElib method .info(). This method, .pmInfo(), works identically but
retrieves the information for the Seos2pm.exe gateway function. the method
.pmDynamicLink() often must use these values instead of those from .info().

.pmPeek()
This method is identical to SElib.peek(), but accesses memory that is given to
Seos2pm.exe or that may only be accessible from a PM program.

324 ScriptEase:ISDK/C

.pmPoke()
This method is identical to SElib.poke() but accesses memory that is given to
Seos2pm.exe or that may only be accessible from a PM program.

.processList([boolean IncludeThreadInfo])
This method returns an array of objects containing data for every running process in the
system. If IncludeThreadInfo is true, then information is also added for each thread
in each process. If IncludeThreadInfo is not supplied then false is assumed, so only
process data is returned.

If there is an error in the thread information, this method returns null, otherwise it
returns an array of objects containing the following properties.

.id ProcessID for this process

.parent ProcessID for the parent of this process

.name String containing the full name of this process

.threads Array of structures describing each thread of this process;
this structure element will not be returned unless
IncludeThreadInfo is set to equal True, in which case
.threads is an array of structures for each thread in the
process, where the thread structure contains these structure
elements:

.ProcID ID of this thread within the process

.SysID ID of this thread within the system

.Priority Running priority of this thread

.Status Current running state of this thread

Language Objects & Libraries 325

ScriptEase
Distributed Scripting Protocol

The Distributed Scripting Protocol, or DSP, is Nombas' method for remote scripting.
Using DSP, your application can communicate with and run scripts on any other
application that uses ScriptEase and is DSP-enabled. For instance, your application can
be controlled by a ScriptEase: Desktop script running on another machine, a ScriptEase:
Web Server Edition script, or even another instance of your application running on
another machine.

There is quite a bit of information about distributed scripting we need to cover, and much
of it is interrelated. For that reason, at times, related information to a topic isn't explored
until a later section of the manual. It may take you a couple of reads to get the most from
this manual.

I: Adding DSP to Your Application
The first part of this document is concerned with how you get DSP running on your
application. The second part of this document is using DSP to script remote applications.

For your application to perform remote scripting tasks, you will first need to add the
ScriptEase: ISDK to your application. This process is extensively detailed in the
ScriptEase: ISDK manual. You can also use DSP with ScriptEase products such as
ScriptEase: Desktop or ScriptEase: Web Server Edition. In any case, the external library
capability of ScriptEase allows you to use (via the '#link' directive) the DSP external
library. If you have decided to turn off the external library capability in your application,
you will need to add the DSP library internally to your application. This is a simple
process.

First, add the source file 'srclib/dsp/sedsp.c' to your builds. Second, edit your 'jseopt.h'
file and add the following line to it:

#define JSE_DSP_ALL

That's it. Recompile and relink your application and you can now use the Distributed
Scripting Protocol with it.

A common usage of DSP involves using the internet (TCP-IP) for tranporting the data, as
detailed below. This is usually done in ScriptEase via the sesock external library. Again,

326 ScriptEase:ISDK/C

if you are not using external libraries, but still want to use sockets for your DSP transport,
you need to add the socket library internally. This is done just like the sedsp functionality
was added, by including the file 'srclib/socket/sesocket.c' and adding a define to your
'jseopt.h' file:

#define JSE_SOCKET_ALL

The Distributed Scripting Transport Mechanism
Distributed scripting consists of two parts, the protocol itself and the transport layer. The
protocol is concerned with what information to send while the transport layer sees to it
that the information gets passed between the two machines. The protocol is DSP itself;
we've done all the work on implementing it, so you need only use it, which we'll discuss
extensively later. The protocol is attached to no particular transport mechanism. You
choose the one you want. This section is concerned with the transport layer. DSP needs to
get particular information to the partner application. You need to get the applications
connected and able to pass this information back and forth.

Commonly, you will use TCP-IP to allow applications to script each other over the
internet. However, we have an example of using shared files to implement transport as
well, and you can use any number of other ways to move the data between two machines.
We include an implementation of TCP-IP tranport as well as shared files for you to use.
Before we get into how you would write your own mechanism, we will explain how to
use these two implementations

We will make all examples in this document scripted examples; you would use these
when all DSP interaction is done inside scripts. For instance, in a client/server model,
both the client and servers would be scripts running on a ScriptEase ISDK application.
You can access the DSP routines directly from the ScriptEase API. We reserve discussion
of this until Appendix i so as to not make the explanations we are giving confusing.

Shared Files
The shared file mechanism is implemented in the file 'dspfile.jsh', simply include this file
at the top of your DSP script. Now you can create a new DSP connection, using shared
files, using the 'new fileDSP()' constructor. This constructor takes two arguments, the
name of two files used to pass the data back and forth. The result of this call is a full DSP
connection object. Once you have this object, you can use all of the DSP mechanisms
described later. You have your ticket, now you are ready see the show.

Here is an example of creating a DSP object using our shared file transport mechanism:

var conn = new fileDSP("dspfile.in","dspfile.out");

You will need to specify the same two files for both DSP partner applications. The only
little gotcha is that the file names for the two partners must be swapped; the input file for

Language Objects & Libraries 327

one application is the output file for the other application, and vice versa. In the example
above, one application has set up file DSP. The other application will need to initialize its
connection like this:

var conn = new fileDSP("dspfile.out","dspfile.in");

Obviously, shared files can only work on machines that can see the same files. This is
easily done if both scripts are run on the same machine, or machines that share files such
as via a Netware file server.

TCP-IP
With the popularity of the internet, it is only a natural that people want to use it to do
distributed scripting. Many popular internet staples, such as web servers and email, are
implemented at their core by a daemon that accepts connections on a TCP-IP socket and
then allows a remote application to control it. With DSP, you can do exactly the same
thing, but you have the full power of Javascript to allow far more complex commands
than the simplistic ones most daemons allow. Once your application has integrated the
ScriptEase ISDK, not only can you run scripts locally to control it, you can allow other
machines to run them to control your application as well.

TCP-IP is the 'language' of the internet. ScriptEase provides the library calls necessary to
create and use TCP-IP sockets in the 'sesock' external library. We provide an include file,
"isdp.h", that uses these calls to implement a transport mechanism for DSP.

Like the file transport mechanism above, both partners must create their end of the
connection. In the TCP-IP world of sockets, one partner must create a connection and the
other partner must connect to that existing connection. This easily lends itself to a client-
server model, but as we will see later, that is not the only possible model; once
connected, either side may run scripts on the other side, or both may.

TCP-IP Server
We will first examine the listener side. This is the application that creates a socket to
accept connections on and waits for those connections to occur. This application creates a
socket it can listen on by using the 'new iDSPServer()' constructor. This is traditionally
called a "server", but keep in mind that the client-server relationship we are discussing
now is only for getting the two applications connected. Once the connection is
established, either side may script the other as we will describe in Chapter II.

Here is the code snippet for creating a server:

328 ScriptEase:ISDK/C

#include "idsp"

 var server = new iDSPServer(port);

In this case, 'port' should be a numeric value, the port to listen on. When using sockets,
you must specify a port number so that the connecting client can then find you. Other
applications on your machine may be using their own ports to do TCP-IP connections, so
it is slightly possible you may get a conflict. If this happens, select a different port
number. You should always use port numbers that are 1000 or higher; the lower port
numbers are reserved for standard system programs like mail and web servers.

Once you have done this, you will have a socket that you can accept connections on. This
value returned is not itself a connection, it is just a socket handle with some extra DSP
information attached. It is a permanent place for clients to find you and for to find the
clients. You use this socket to get connections to clients; You use that handle's method
'accept()'. Even after you have a connection and are performing DSP scripting using it,
the original socket remains. You can continue to accept more connections now and in the
future using it. Usually, a server handling a TCP-IP socket runs indefinitely, until it is
explicitly shutdown, and this socket exists for the life of the program.

Once we have created a socket to listen on using the above code, we need to accept
connections to actually do DSP scripting. Whenever a TCP-IP client connects to us, we
use the 'accept()' method of that socket to get this connection and service the client. We
can use the 'ready()' method of the socket to know if such a connection has been made. If
we just call 'accept()', it will always get a connection for us. If no one is trying to connect
when we make a call to 'accept()', we will wait until someone does. This can be fine for
some programs, but in others you may want your program to do other tasks rather than be
put to sleep waiting for a connection to appear. This is especially important for Windows
scripts. While the 'accept()' method is waiting, Windows messages are not processed, and
the application will appear to freeze.

So, here is a simple fragment to get new connections using iDSP (this fragment builds on
the last simple fragment):

Language Objects & Libraries 329

/* This server just runs forever */
 while(1)
 {
 /* wait for the next connection to appear */
 while(!server.ready(250));
 /* get the next connection */
 var conn = server.accept();

 /* do some DSP scripting with the remote host
*/

 /* close the connection and loop to service the
next connection */
 conn.dspClose();
 }

Notice that this simple server code handles only a single connection at a time. This is not
necessary, you can call the 'accept()' method multiple times and have more than one
connection simultaneously, if multiple clients are trying to connect to your server at the
same time. Of course, the code to handle their requests simultaneously will be more
complex. Handling multiple socket connections at once is demonstrated in the sample
'inndsp.jse', which is discussed fully in Appendix ii.

Of course, any of the methods you would use to handle multiple socket connections
applies equally to multiple DSP connections, since at its heart, an iDSP connection is
really just a socket. While a few of the socket library calls, such as 'accept()' and 'listen()'
are directly mimicked by the iDSPServer() object, not all are. Fortunately, you can get
the socket object itself by using the '.dspConnection' field of a DSP connection, such as
'server.connection' or 'conn.connection', in the sample code fragments above. You can
then use this socket in any socket calls.

This sample code fragment uses the 'dspClose()' call. This will be discussed as part of the
next chapter on how you actually do DSP scripting. Suffice it to say for now, when you
finish scripting on a particular connection, you use 'dspClose()' to shut down the
connection.

TCP-IP Client
Now that we have the server half of the applications, we need a client. The client will
connect to an already existing server's socket. Fortunately, it is much simpler than the
work we needed to do to get the server running. We can connect to an existing server like
this:

330 ScriptEase:ISDK/C

var client = new iDSP(host,port);

The 'host' parameter is the internet machine name that the server is running on. For
instance, my machine is named "outworld.nombas.com", so if you wanted to connect to a
server running on my machine, that would be the name you use. You can use "localhost"
to have the client connect to an application running on the same machine the client is on.
'port' is the port number, the same one that the server used when it initialized its socket.
That was described above in the section on the server.

That's it. Again, both partner applications will have a connection they can use to script
the other application. We will now dive into actually using those connections. If you
would like to build a custom transport mechanism instead of using one of our sample
ones, Appendix ii has full details on how you go about doing this.

Language Objects & Libraries 331

II: Using Distributed Scripting

Distributed Scripting Models
After you have a connection established, remote scripting can take place. The connection
does not have any preferred 'direction'. Either side can call DSP commands that the other
will process.

For instance, the TCP-IP server may accept connections from clients, then run scripts on
them. Maybe you are writing a server that contains updates for software installed on your
company's machines. Each day, as part of a CRON job, every machine in the office
connects to that server. The server then queries the client machine to see what updates it
has that are not yet on the client machine, and installs them.

On the other hand, you can instead make the client machine run a script which queries the
server to see what updates it has, then installs them on itself. Which partner is running the
script and which is being scripted is determined by the scripts being run themselves. DSP
allows both sides of the connection to run scripts on the other.

Let's look at two common models for doing DSP scripting.

Client-Server
Often, you'll want a Client-Server model. In this case, after the connection is made, one
side will run a script that may execute script code on the other side. The other partner will
just wait while that script runs. In this case, the side running the script is the client, and
the side waiting is the server. The service being provided is the processing of the DSP
scripts that the client wishes to run on the server. This is the simplest model and is very
easy to understand. Again, don't confuse this with the iDSP client-server connections.
Once the connection is established, either side may be the client as we are talking about
now. It is most common that the side doing the connecting is the client, though.

There is nothing to say about the client in this section; it just runs some script doing DSP.
What you can do with DSP will be fully described below. In this model, the client script
is the only one 'doing anything'.

The server is also running a script. However, in this model, its only job is to wait for the
client to finish while processing any DSP commands the client wants done. It is possible
for DSP errors to occur, such as losing the connection, so the server's script needs to be
able to handle that.

332 ScriptEase:ISDK/C

Here is a simple fragment that implements a DSP server:

 try
 {
 /* while the other guy has stuff to do, do
it */
 while(conn.dspService());
 }
 catch(e)
 {
 /* if some error occurs, don't crash, just
terminate the connection */
 }
 conn.dspClose();

You would use this fragment after the connection is made, for instance after the line in
the TCP-IP sample fragment that reads:

/* do some DSP scripting with the remote host */

The key routine we learn about here is 'dspService().' DSP commands sent from the
remote host are processed with this call. Each call to it processes a single command. It
returns 'false' if the remote host closed the connection using 'dspClose()'. We don't close
our own connection until after the client has done all of the scripting it desires.

Peer-To-Peer Scripting
Not all DSP applications will want only one side running code. You may want both sides
running code and using distributed scripting to communicate. In this case, we actually
have a relationship among peers. This is the basic DSP model; the Client-Server really
just is a special case of this in which one side, the server, does nothing. As peers, each
side is free to run whatever script it wants. It can call functions and modify variables on
the other side using DSP.

The main point to remember while doing peer-to-peer communication is that DSP
requests from the other side are only handled when your own script calls some DSP
function. If you do other scripting tasks, the other side will be waiting on any DSP
processing it needs done until you actually call a DSP function. For this reason, peer-to-
peer scripting is necessarily more complex than a Client-Server relationship. Several
hints are in order. First, make sure your script periodically calls 'dspService()' to process
any commands that your partner needs done. Second, you must have some mechanism to
signal both sides that you are ready to quit. If one side calls 'dspClose()', then the
connection will be lost, even if the other side still wants to make DSP calls.

The 'inndsp.jse' sample, described fully in Appendix ii, uses a peer model, so it will be
instructive to look at it to see what can be done.

Language Objects & Libraries 333

Using DSP
We've covered a lot of ground, from setting up distributed scripting to the models you
will use. Now we get to the good stuff, actually using DSP in your scripts. Fortunately,
this section is very short, since DSP scripting is very easy. Once you have a connection
established with the remote host, that connection is treated very much like the entire
scripting environment on the other side. We have, in our previous code fragments, named
the connection variable 'conn', we will use that in the following examples.

So what does 'scripting environment' mean. Simply, all the variables and functions on the
remote side can be accessed using this variable. For instance, 'conn.a' will give us the
value of the global variable 'a' on the remote machine. 'conn.Clib.puts('Hi there!');' will
print out a message on the remote machine, and so forth. Of course, there are a few
caveats we will mention shortly, but this is the basic idea. Let's look at the potential
gotchas.

DSP References
The first thing to explain is that information is not transferred between machines unless it
is needed. If you write,

var a = conn.a;

'a' is not actually the value of 'a' on the other side until you try to use it, such as with:

var b = a + 10;

Now, 'a's value will be fetched from the other side to add to 10. This is especially
important with objects, if you write:

var rClib = conn.Clib;

perhaps with the intention of then doing:

rClib.printf("Hello, world.\n");
 rClib.puts("Enter your name:);
 var name = rClib.gets();
 /* etc */

It would be silly to try to copy the entire Clib object across the network due to this
statement. Instead, whenever you reference the other side, a special object is constructed
that knows how to 'fetch itself' from the remote machine when the value of the object is
needed. If you were to printout the 'typeof a', it would register as a "function" (a function

334 ScriptEase:ISDK/C

is a special type of object), not whatever type the value on the other machine is.

There are two ways you can see what 'a's type really is. The first is to force the value to
be copied to the local machine, using 'dspGetValue()', for instance:

Clib.printf(typeof (a.dspGetValue()));

The second, preferred way, requires no copying of data across the machines. You simply
check the type on the remote machine, and just get the type string. Here is a code
fragment:

Clib.printf(conn.eval("typeof a"));

By using 'conn.eval', we run a short script fragment on the remote machine. It has no
trouble checking the type of 'a' there, and then the result is send back to us for printing.
This may seem a more work, but if 'a' is a complex object, trying to send the whole thing
across the DSP connection can be much more work.

Working With Objects
The same gotcha can manifest itself when you want to enumerate an object's members if
the object is on the remote machine. Just as 'typeof' sees the placeholder object, not the
actual value, so would the FOR..IN statement. If you use FOR..IN, you will see the
members of the placeholder object, not the members of the remote object. So, how do
you go about getting them?

Just like seeing its type, you have two solutions. Using 'dspGetValue()' is obviously the
easiest sounding one, but it will actually lead to many problems. Javascript objects can
often be very complex things that don't make much sense on another machine. Cyclic
loops especially can cause a lot of problems when trying to copy objects. For this reason,
DSP does not allow an entire object to be copied across. We are considering ways to get
this to work in future versions, but for now a workaround is needed. You need to do the
enumeration on the remote machine and get the results to the local machine. So, here is
the code that you would like to do:

var a = conn.Clib;
 for(var x in a) { ... }

and this is how you should write it so it will work correctly:

Language Objects & Libraries 335

var a = conn.Clib;
 var a = conn.Clib;
 var fields = conn.eval(
 "var tmp = \"\"; for(var tmp2 in Clib) tmp =
tmp + \",\"+ tmp2; return tmp;");
 fields =
fields.substring(1,fields.length).split(",");
 for(var x2 in fields)
 {
 var x = fields[x];
 ...
 }

(Yes, this is ugly, but it works.)

336 ScriptEase:ISDK/C

DSP and The ScriptEase API
It is useful to do DSP processing via the ScriptEase ISDK API rather than via scripts in
some applications. A application may want to run a server in the background and not
devote an entire thread to running a server script. The application can do the same actions
via the API as a script would. The source file "dspapi.c" and corresponding header
"dspapi.h" provide the routines we examine.

The basic tasks for a ScriptEase API DSP program are the same as for a script; create a
DSP connection, run code that uses DSP and/or service incoming DSP requests, and
close everything down when done. Each task can be done by simply calling the
corresponding DSP wrapper functions, finding them with jseGetMember() and calling
them with jseCallFunction(). However, you can call them directly in C using the
functions we will talk about next.

First, creating a DSP connection is necessary. A DSP connection is just a jseVariable that
is set up with the connection information. In your case, you will need to set up the
physical connection with the remote machine, then call the 'dspCreateConnection()'
function, passing it two callback parameters. These parameters are C functions you
provide to transmit and receive data. The resulting jseVariable can be saved, or assigned
to a member of the global object if you want scripts to be able to DSP using it. In
addition, this function takes parameters to allow you to set the security of this script
(security is described in appendix ii.)

Now that you have a DSP object, you can perform DSP actions on it just like a script can.
For instance, you can use 'jseGetMember()' to look up a member of the object, which is
the remote value. Underneath, this will eventually call the required DSP routines to
service the request. The function 'dspService()' is provided as well. This is a C-callable
routine that acts just like the script version, allowing you to call it every so often to
handle incoming DSP requests on a particular DSP connection.

Finally, you can close a DSP connection, just like in Javascript, by using the 'dspClose()'
function provided.

Writing Your Own Transport
Making your own transport mechanism is pretty simply. You will need to define a new
object class that handles DSP creation and transport. Doing this requires a constructor
method and a couple of extra methods to handle reading data, writing data, and closing
the connection.

First, you will need a constructor function. This function will create and return a new
DSP connection.

Language Objects & Libraries 337

Such a function looks something like this:

function myDSP(args)
 {
 var ret = new DSP(myOpen,args);
 if(ret!=null) ret._prototype =
myDSP.prototype;
 return ret;
 }

'myOpen' is another function you will write which we talk about shortly. Arguments are
whatever arguments you need to pass to the constructor. For instance, in iDSP, a client
needs the host name and port number to connect to. You can pass more than one
argument. We call the DSP() constructor with our open function, passing it these
arguments. The result is an object of class 'DSP', but we really want it to be of our class
(a subclass of DSP), and the second line accomplishes this. If you want to know more
about prototypes and _prototypes, see the ISDK manual. For our purposes, it is enough to
know that this is the way you do it. Finally, we return the resulting object.

The 'myOpen' function (or whatever you name it) simply takes the arguments and creates
a connection to the remote host. A variable is returned representing the connection, of
whatever format you choose. Often it is an object whose members store data you need to
access the connection. This variable will be passed to all of the routines we will describe
next. First, though, because we have changed the objects returned to be of our class, we
need to make sure they still will be DSP objects. We do this by making our class an
explicit subclass of DSP. You do this with the following code snippet (building on the
last example):

myDSP.prototype._prototype = DSP.prototype;

Now that we have our connection established, DSP will be using it to pass its data back
and forth. You need to write the necessary transport functions to allow this to happen.
These functions must be put in the prototype of the constructor function so that DSP
objects created with that constructor will have them. These functions only apply to DSP
objects constructed with your function; you may have other DSP objects constructed with
a different transport protocol, and they will use their own functions.

338 ScriptEase:ISDK/C

Building on the above example:

function myDSP.prototype.dspSend(conn,buffer,timeout)
 {
 /* tranport the data */
 }

 function
myDSP.prototype.dspReceive(conn,&buffer,length,timeou
t)
 {
 /* receive the data into buffer */
 }

Both functions take a connection as their first parameter, this being whatever value your
DSP open function returned. They both also receive a timeout, the number of
milliseconds to try to send or receive the data before giving up. You can ignore this
parameter and just wait forever if you like. Both functions also receive a buffer parameter
(a variable of type "buffer", a ScriptEase data type.)

For the send function, the buffer contains the data to be send, while for the receive
function, it is a parameter you fill in with the data actually received. Remember, you can
access the '.length' member of the buffer to determine its actual size.

The receive function receives one additional parameter, the length. This is the maximum
size the buffer should be on return, it can be less if you receive some data but not as much
as specified. Both functions return the actual length of the data transmitted.

We are almost done, one more function completes the minimal DSP transport
requirements. You need a function to close down the connection when it is done. This
will be called by DSP, usually as a direct result of the script using dspClose() on the
connection, but it can also happen if there is an error that forces the connection to be
aborted. The function looks like this:

function myDSP.prototype.dspCloseConnection(conn)
 {
 /* close the connection */
 }

Security and DSP
In an ideal world, we would be able to open up our machine to anyone in the world to
connect to us and run scripts on our machines. We would hope that they would only run
appropriate ones, never malicious ones. Unfortunately, that is not our world. It is
necessary to implement security measures to make sure that distributed scripting is not
misused.

The first part of DSP security is in the connection mechanism itself. When you are

Language Objects & Libraries 339

opening a connection, you can implement a myriad of ways to verify the connector, such
as by a password. However, this is usually not enough. If you are writing a chat program
for instance, you want anyone to be able to connect. You just want them to only be able
to do 'chat' things, but arbitrary functions such as Clib.system(). DSP allows you to do
just that by adding security to the code run by remote scripts. You should take the time to
read the ScriptEase security manual, since DSP security uses the normal ScriptEase
security mechanism.

DSP security is implemented by adding 'dspSecurityInit()', 'dspSecurityTerm()', and
'dspSecurityGuard()' functions to the transport class, just like the 'dspSend()' and
'dspReceive()' we talked about above. These functions correspond exactly to the normal
security functions, except they apply only to remote scripts run on a connection of this
class. The security variable is a newly created object, but it has the "dsp" member set to
the DSP connection variable.

You should make sure to make all of your transport, security, and exported functions
read-only. You do this using the 'setAttributes()' function, such as by:

setAttributes(myDSP.prototype.dspSecurityInit,0x06);

If you fail to do this, a clever hacker can on the first pass, change your function to one of
his own, then connect again and bypass security. NEVER allow access to the
'setAttributes()' function, or your security will be able to be bypassed.

THE CHAT EXAMPLE
The programs 'inn.jse, inncli.jse', and 'innbard.jse' are long time ScriptEase samples that
demonstrate a simple application using the socket library. To demonstrate most of the
DSP concepts, 'inndsp.jse' is a version of all three programs that communicates by using
DSP. It still uses sockets for its basic transport. This program uses a peer-to-peer model.
You should look at the sample to see most of the DSP concepts described in this chapter
in action.

340 ScriptEase:ISDK/C

Language Objects & Libraries 341

Using the Integrated Debugger
ScriptEase comes with a source debugger that provides a complete Integrated Debugging
Environment, which means you can edit a script while you are debugging it.

The debugger is a Windows application with a standard Multiple Document Interface
(MDI) like many other applications. The image above has four windows showing: the
script, Watches, Locals, and the Globals window. The specifics about windows are
explained later. The script window is explained in the section about the File menu
options, and the other three in the section about the window menu options. For now, just
understand that the tiled arrangement shown above is just one out of many ways to
display windows in the debugger. You may have multiple script window or only one.
You may have only one window showing or any combination of windows. Like any MDI
application, you may maximize, minimize, tile, and cascade windows. In short, the user
interface of the ScriptEase debugger is a standard windows interface.

ScriptEase debuggers are available only for Windows operating environments. There
are debuggers for Windows 95/98, Windows NT, and Windows 3.x.

Using the ScriptEase Debugger
The ScriptEase debugger is a source code debugger, which means that you may debug
programs while watching the execution of a program line by line in the original source
code. You may set breakpoints, trace lines of code as they execute, step into and over
functions, watch variables that you choose, keep up with global and local variables, and
other powerful options that you expect in a good source code debugger.

342 ScriptEase:ISDK/C

The main window of the ScriptEase debugger consists of the following components,
listed in top to bottom order.

Components of main MDI window
Menu bar
All commands in the ScriptEase debugger may be accessed through menus. The menu
bar is described completely in the following section, "Main menu bar."

Tool bar
The toolbar has buttons for the common and useful debugger commands. Instead of
clicking menus, you may click a button on the toolbar as a shortcut. The commands that
are available on the toolbar are exactly the same as the corresponding commands in
menus. In the section, "Main menu bar," commands that are available on the toolbar are
indicated by the notation: "In toolbar."

Document window
The document window is a standard Windows Multiple Document Interface (MDI)
window. You may open four kinds of windows within the document window: Source,
Watches, Locals, and Globals.

Status bar
The status bar at the bottom of the window provides useful information concerning the
currently active window. The current cursor position in a script window is displayed as
line and column numbers. The status of the Caps, Num, and Scroll lock keys is displayed.
When the mouse cursor is over menu and toolbar items, help or hint information displays
in the status bar. The general state of the IDE is also displayed, such as "Ready" or
"Program Terminated."

Language Objects & Libraries 343

MDI windows
Source
Source windows may be called script windows since they display the source code of a
script file. These script windows are actually text editing windows in which scripts may
be viewed, edited, or used for source line debugging.

When used for editing, the editor is capable of writing an entire script, but the editing
features of a script window are basic and adequate for simple scripts. Normally, you will
use a more powerful editor for most writing and editing of sophisticated scripts, an editor
such as the ScriptEase Editor that accompanies ScriptEase products. The ScriptEase
Editor has features that allow you to coordinate your work effectively with the ScriptEase
debugger. Currently, when you change text in a script while it is still loaded in a script
window in the debugger, you must manually reload the file in the debugger. However,
when you make changes in a script while in a script window, the ScriptEase Editor can
automatically detect the changes and reload the file. Thus, for most editing of scripts use
the ScriptEase Editor for major writing and script windows in the debugger for minor
changes while debugging a script.

The current position in a source file is indicated by a special marker, icon, that can be
chosen from several options. In addition, breakpoints may be set in a script window.
Breakpoints display as small red hexagons at the beginning of the lines of scripts to
which they apply.

You may open multiple script windows at the same time. Remember, that various
debugging commands apply to the currently active script window. For example, a
command such as "Debug | Run in Debugger" runs the script in the currently active
source window, not any other scripts that might be open in source windows.

Source windows have gray backgrounds when in debugging, as opposed to editing,
mode. You may not edit scripts while in debugging mode. When script windows have
gray backgrounds, remember that you may only use debugging commands, such as
"Debug | Step Into."

Globals
The Globals window displays all global variables that are available to the point in a
script. The source marker indicates in a script where execution is currently occurring. The
information for each variable displayed is the variable name, type, and value.

344 ScriptEase:ISDK/C

Locals
The Locals window displays all local variables that are available at the point in a script
where execution is occurring. The source marker indicates in a script where execution is
currently occurring. The variables in a local window constantly change as functions that
have local variables are entered and debugged. The information for each variable
displayed is the variable name, type, and value.

Watches
The Watches window is a place where you can view variables and expressions that you
want to see. You may put plain variables here, and when they are active, these variables
will show as in other windows. In addition you may set variables to be watched and used
as breakpoints. You may set execution to break if a variable changes or is equal to true or
false. But the watch window may be used with more than just variables, it may be used
with expressions. For example,

the following code:
 var arr = Array(false,1, 2, 3, "four");

creates an array with four elements. In the Locals and Globals windows, the array arr is
shown as type object with no value shown.

You might want to keep up with one or more elements in the array. To keep up with the
second element in the array arr, set a watch for arr[1] and it will appear as an
expression to be watched with its format type and value, which in this case is 1. Perhaps
you want to keep up with the addition or concatenation of the fourth and fifth elements. If
so, set a watch or arr[3] + arr[4], which in this case would display a value of
"four3".

In fact, the watch window is designed to watch expressions rather than variables. When a
variable by itself is watched, the debugger simply considers it to be an expression. Notice
that the second column in the watch window provides format information instead of the
type of a variable.

Language Objects & Libraries 345

Setting watches
The Watch dialog, Figure 2, is the main window used to set watch information.

Add
The Add button adds the current expression, in the Expression edit box, to the list of
expressions to be watched in the Watches window.

Remove
The Remove button removes the expression which is currently highlighted in the list of
expressions to be watched.

Remove All
The Remove All button removes all expressions to be watched.

Expression
The Expression edit box allows entry of expressions and variables to be watched in the
Watches window.

346 ScriptEase:ISDK/C

Format String
The Format String edit box allows some control over the format of expression, that is,
how an expression value will appear.

Break when Expression
The four options in this group allow watches to serve as conditional breakpoints. To
simply watch an expression or variable, set [No Break], which is the default. Set Changes
if you want program execution to pause when the expression or variable changes value.
Set True or False if you want program execution to pause when an expression becomes
true or false. You may use "Debug | Change Variables..." to set a variable to a different
value and watch execution with the changed variable.

Setting breakpoints
The Breakpoint dialog, Figure 3, is the main window used to set breakpoints.

Add

Language Objects & Libraries 347

The Add button adds a breakpoint at the line specified, in the Line Number edit box, to
the script specified in the File Name edit box. Of course, the script itself is not altered
since scripts are plain text files. Breakpoints are retained as settings within the ScriptEase
debugger.

Remove
The Remove button removes the breakpoint which is currently highlighted in the
Breakpoints list box.

File Name
The File Name edit box indicates which script is presently being used for add and remove
operations

Line Number
The Line Number edit box indicates which line in a script is affected by add and remove
operations

Breakpoints
The Breakpoints list box shows all breakpoints currently active in a script.

Main menu bar
The main menu bar consists of the seven menus across the top of the windows just below
the title of bar. The seven menus are: File, Edit, View, Search, Debug, Window, and
Help. Some menu commands may be accessed from the toolbar or by shortcut keys, and
those that can are indicated by the notations: "In toolbar" and a keystroke description.

File menu
The file menu has options for starting, opening, closing, saving, and printing script files.
Plus, an exit option to exit the debugger. All of the commands concerning files operate on
script or source files. These files are opened in the integrated editor which allows the use
of all debugging options in the integrated debugger. The editor is also a standard editor
that can be used to do plain text editing in any text file, such as one created by Notepad.

The editor can be used to write complete scripts. Normally, however, scripters use their
favored editors to write and edit most scripts and use the integrated editor while
debugging a script.

348 ScriptEase:ISDK/C

New In toolbar and Ctrl+N
Start a new script or source file. The file is opened in the editor which is integrated with
all debugging features.

Open... In toolbar and Ctrl+O
Open dialog to open a script file.

Close Ctrl+W
Close the currently active script file.

Save In toolbar and Ctrl+S
Save the currently active script file.

Save As...
Save the currently active script file to a new filename. The title of the currently active
script will change to the new filename. Immediately after a script is saved to a new
filename, the script will exist in two separate files with the old and new filenames. But,
the new filename will be the active script. To edit the previous file, it must be opened
again.

Print... In toolbar and Ctrl+P
Print the currently active script file using straightforward print settings. The print dialog
that opens is a standard Windows print dialog.

Print Preview
Preview how the printed script file will look before actually printing the file. When
previewing a page, there are various options to page through the pre-printed document,
examine pages one or two at a time, zoom in and out, print the document, or close the
preview window without printing.

Print Setup...
Change printer settings. These settings are for the printer and are not a page setup. The
print setup dialog that opens is a standard Windows print dialog.

(Recent files list)
List up to four of the most recent script files that have been opened in the editor.

Exit
Exit the entire ScriptEase debugger program. Some settings, such as the size and location
of open windows is saved. Thus, when the ScriptEase debugger is started again, it is
easier to restore various windows to their previous state.

Edit menu

Language Objects & Libraries 349

Undo Ctrl+Z
Undo the last editor operation in the script window.

Cut In toolbar and Ctrl+X
Cut selected text from the script window.

Copy In toolbar and Ctrl+C
Copy selected text from the script window.

Paste In toolbar and Ctrl+V
Paste text at the insertion point, where the cursor is, or into the selection in the script
window.

Options
Font...
Display a dialog to set the style, size, and color of the font used in the debugger windows.
Tabs...
Set how many spaces should be used when displaying a tab character in the debugger
windows.
Trace On
When a script is run using the Debug | Run in Debugger menu item, the active script runs
until it encounters a breakpoint or the script ends. If the Edit | Options | Trace On option
is checked, then when a script is run in the debugger, the lines executed are traced. The
source marker visibly moves from source line to source line as the script is run. The
effect is similar to choosing the Debug | Step Into and Step Over menu items. The
difference is that with Trace On checked, the stepping is done automatically.
Trace Speed
When the Trace On menu item is checked, the Trace Speed options determine how fast
the trace operation executes each line of a script. The options are: Fast, Normal, Slow,
and Slowest.
Trace over
When the Trace On menu item is checked, the Trace Over menu item determines if the
tracing steps over functions that are called or steps into them. When Trace Over is
checked, the tracer steps over functions, and when it is not checked, the tracer steps into
functions.
Source Mark
When debugging a script, the current position in a script is visibly marked by an icon or
graphic. The Source Mark option allows a choice of the appearance of the marker.
Default Interpreter...
The default interpreter is the ScriptEase executable that the debugger uses when
executing a script. In Win32, the two valid programs are SEwin32.exe and SEcon32.exe.
There are differences between a windowed application and a console application. You

350 ScriptEase:ISDK/C

may want to set the default interpreter to be the same interpreter that you will use to
execute a script.

View menu
Toolbar
View the push button toolbar, just below the menu bar, if checked.

Status Bar
View the status bar at the bottom of the debugger window. The status bar displays
various helpful messages and the position of the cursor or insertion point in the editor in
terms of line and column.

Search menu
Find...Ctrl+F
Find text in the script window using a find dialog.

Replace... Ctrl+R
Find text in the script window and replace it with other text using a find and replace
dialog.

Language Objects & Libraries 351

Debug menu
Start Debug Session
Start executing the active script in a debug session. The source marker is positioned at the
first executable line in the script awaiting further commands.

Restart
Restart a debugging session. The source marker is positioned at the first executable line
in the script awaiting further commands.

Run in Debugger In toolbar and F5
Run the current script in the debugger. The source mark appears. The script executes until
a break point is reached or the script is finished.

Go Ctrl+F5
Execute the current script as a program, that is, not in the debugger.

Stop In toolbar
Stop the execution of a script that is running in the debugger. The script may be actively
executing or paused at a source line or breakpoint.

Step Into In toolbar and F9
Steps into any user defined functions in the current source line and begins displaying
source lines in the function as they are executed. Does not step into built in functions. If a
script has not begun execution in the debugger, then the first line of executable code is
executed.

Step Over In toolbar and F10
Steps over any user defined functions in the current source line and simply executes the
line and pauses at the next line in the current script. If a script has not begun execution in
the debugger, then the first line of executable code is executed.

Step to Cursor In toolbar and F11
Executes all lines of executable code till reaching the line where the cursor is located. In
effect, the cursor behaves like a temporary breakpoint.

Step Out In toolbar and F12
Executes lines of code in the current function until the function is finished.

Parameters...
Opens a dialog box to set command line parameters to be sent to a script when it is
executed in the debugger. The parameters are handled by a script in the same way as they
are when part of a command line.

352 ScriptEase:ISDK/C

Breakpoint
Toggle current In toolbar and F8
Toggle the breakpoint at the current line, off or on.
Add/Remove...
Opens a dialog box to add or remove breakpoints on any line in the current script.
Remove all In toolbar
Removes all breakpoints in the current script.

Watch
Add/Remove... In toolbar
Opens a dialog box for adding variables and expressions to the watch window or
removing them.
Remove all In toolbar
Remove all watches from the current script and debugging session.

Change Variables
The menu item allows a variable to be changed while a script is executing.

Window menu
Cascade
Display the open windows in the debugger in a cascaded fashion.

Tile
Tile open windows horizontally. If two or three windows are open, they are all tiled
horizontally extending the entire width of the main debugger window. If four or more
windows are open, then two columns of windows are begun, and all windows are tiled
horizontally in the two columns. For example, if a script window, the global, the local,
and the watch window are opened, the resulting window is quartered. Each window will
be in the four corners of the main window. The screen shot, Figure 1, at the beginning of
this section is an example of four tiled windows.

Arrange Icons
As in all MDI applications, open windows may be minimized inside the main window.
The Arrange Icons menu item arranges these minimized icons at the bottom of the main
debugger window.

Global... Ctrl+Shft+G
Open the Globals window to view global variables while debugging a script.

Local... Ctrl+Shft+L
Open the Locals window to view local variables while debugging a script.

Language Objects & Libraries 353

Watch... Ctrl+Shft+W
Open the Watches window to view variables and expressions that have been defined by a
user.

 (Open windows list)
A list of the currently open windows in the debugger.

Help menu
Help Topics... F1
Display a help file for the debugger.

About ScriptEase Debugger... In toolbar
Displays program information, version number, and copyright notice for the debugger.

354 ScriptEase:ISDK/C

Appendix I - Aboutopt.jse 355

Appendix I

Aboutopt.jse - jseopt.h analyzer
Purpose

The jseopt.h ananlyzer is designed to provide the user with three important pieces of
information. The first is which files the user needs to include in his or her project in order
to have all the functions available. The second is the functions which need to be called in
order to make the functions available scripts. The final information is exactly which
objects and functions will be made available, based on what the user has defined. The
analyzer is really a C preprocessor which analyzes what has been left defined after
processing the file in order to see what information the user needs.

Configuration File
The aboutopt.cfg file is used to manage additional define and user-specific search
directories. The script searches for this file both in the current directory and the directory
where the script is located. The config file is actually just a script that is executed by the
program, so you have all the control that you would normally have in SEDesk. There are
two things that the config file is designed to do:

Define constants
Many times you need to have certain defines set to correctly process a file. For example,
you may need to have __JSE_WIN32__ set to include all the appropriate files. While
these defines can be specified on the command line, you have more control within the
config file (such as being able to define each to something other than 1). To do this,
simply set the global value and what you want it to be defined to be.

This section of a config file may look something like this:
__CENVI__ = 1;
NDEBUG = 1;
if defined(__JSE_WIN32__)
{
__WATCOMC__ = 1;
__WINDOWS__ = 1;
}

This section defines some globals for general use, which are __CENVI__ and NDEBUG.
And since this is an interpreted script, it can use the control statements to define
additional defines if __JSE_WIN32__ is defined. This particular config file will 'fill-in'

356 ScriptEase ISDK/C 4.20

the minor defines (the compiler and system defines __WATCOMC__ and
__WINDOWS__) given a 'major' define (__JSE_WIN32__).

Designate search paths
During the analysis process, the script must be able to find include files. The most
important of these files are the user include paths. You must make sure that you include
'incjse', 'srcmisc', 'srcapp', and 'srclib' in your search directories. You may also include
system paths, but for the most part these should be unecessary. The only thing that
include files are scanned for are additional defines, so the only reason you would need to
include one of these files is if there is a conditional define that you need, although you
could always define it yourself in the config file.

There are two functions you can use to add user paths to the search paths. They are
AddUserPath() and AddSystemPath(). They both take as their first parameter the
path to the directory to search, which can be either a full path or a relative path. The
second optional parameter, if true, indicates that the directory should be searched
recursively. This is important in such directories as 'srclib', where you don't want to have
to specify every separate lib directory.

This section of a config file might look something like this:
var ISDKPath = Clib.getcwd() + `\`;
AddUserPath(ISDKPath + "incjse");
AddUserPath(ISDKPath + "SRCMISC");
AddUserPath(ISDKPath + "srcapp");
AddUserPath(ISDKPath + "srclib", true);

Again, because it is an actual interpreted script, the config file can use functions such as
Clib.getcwd(). This section of code assumes that you are in the root directory of the
ISDK tree, and builds the paths from there. Note also that true is passed as a second
parameter in the last call to the function, which indicates that 'srclib' should be searched
recursively.

Usage
Once the configuration file is specified, the program simply needs to be run by running
secon32 aboutopt. The program will attempt to look for the configuration file in the
current directory, or in the directory in which the script is located. Additional defines can
be passed to the program by specifying parameters to the script. Any additional
parameters passed to the script will be defined to be 1 during analysis of the header file.
For example, running secon32 aboutopt __JSE_WIN32__ will define
__JSE_WIN32__ to be 1, just as if it was set in the configuration file. For the most part,

Appendix I - Aboutopt.jse 357

all defines should be put in the configuration file, although if the header file is used for
multiple OSes, it might be better to allow the OS to be specified on the command line.

Because the configuration file is really just a script, and the command line options are
initalized before running the configuration file, a config file could have text such as:

if defined(__JSE_WIN32__)
{
__WATCOMC__ = 1;
__WINDOWS__ = 1;
}

This defines some additional parameters, but only if __JSE_WIN32__ is supplied on the
command line. The output is sent to standard output, although most likely you will want
to redirect the output to a file. The first messages are simply a list of files as they are
processed, and errors that came up during that process. The important part of the output is
after this list, and is described below.

Understanding the Output
The output from the analyzation process is divided into four basic sections:

Files you need to include
This section lists the files which you should include in your project in order for all the
functions you have specified to be included with the interpreter. If you fail to include all
of these files, most likely you will get linking errors and unersolved references. This
section is straightforward, with the files being divided into groups.

358 ScriptEase ISDK/C 4.20

The output often looks something like this:
Files that you need to include:
/**** SRCMISC ****/
srcmisc\utilhuge.c
srcmisc\sedllrun.c
srcmisc\globldat.c
srcmisc\seobjfun.c
srcmisc\cmdline.c
srcmisc\dbgprntf.c
srcmisc\dirparts.c
srcmisc\jsemem.c
srcmisc\findfile.c
srcmisc\utilstr.c
/**** SRCLIB\COMMON ****/
srclib\common\setxtlib.c
srclib\common\sedyna.c
srclib\common\sedynlib.c
srclib\common\sedyncal.c
srclib\common\seliball.c
srclib\common\selink.c
srclib\common\selibutl.c
srclib\common\seblob.c
/**** SRCLIB\LANG ****/
srclib\lang\selang.c
srclib\lang\selngmsc.c
srclib\lang\seconvrt.c
/**** SRCLIB\ECMA ****/
srclib\ecma\mathobj.c
srclib\ecma\seecma.c
srclib\ecma\ctables.c
srclib\ecma\regex.c
srclib\ecma\sebuffer.c
srclib\ecma\seregexp.c
srclib\ecma\ecmamisc.c
srclib\ecma\sedate.c
srclib\ecma\seobject.c

Simply include all of the specified files into your project and you'll be set.

Functions you need to call
This section describes all of the functions you will need to call in order for the functions
to be added to the interpreter. This allows for individual enabling of libraries, though in
the majority of cases, you should simply call LoadLibrary_All(), which will call all
the appropriate load functions.

Appendix I - Aboutopt.jse 359

The output for this section looks something like the following:
Functions you need to call to initialize libraries:
LoadLibrary_Lang();
LoadLibrary_Ecma();

Alternately, you may call LoadLibrary_All() which will call all of the
above functions.

All of these functions take a single parameter, which is a jseContext. The context
returned from jseInitializeExternalLink() should be passed to these functions
during the program's initialization. Any contexts inherited from this base context will
include the libraries added to the original.

Objects available to scripts
This section describes which global objects are available to scripts, and
which methods instances of those objects have available to them. These
objects can be called as constructors, such as new Array(), and the
instance variable that it returns will ahve all of the specified functions
available to it. These functions are equivalent to
Array.prototype.function, as they are inherited through the prototype
chain. The output for this section looks something like the following:

360 ScriptEase ISDK/C 4.20

Object constructors available to scripts and methods
of those objects:
Array
.concat()
.join()
.pop()
.push()
.reverse()
.shift()
.slice()
.sort()
.splice()
.toLocaleString()
.toString()
.unshift()
Boolean
.toString()
.valueOf()
Buffer
.putValue()
.getValue()
.putString()
.getString()
.toString()
.subBuffer()
Function
.apply()
.call()
.toString()
Number
.toLocaleString()
.toString()
.valueOf()
Object
.hasOwnProperty()
.isPrototypeOf()
.propertyIsEnumerable()
.toLocaleString()
.toString()
.valueOf()
String
.charAt()
.charCodeAt()
.concat()
.indexOf()
.lastIndexOf()

Appendix I - Aboutopt.jse 361

.localeCompare()

.slice()

.split()

.substring()

.toLocaleLowerCase()

.toLocaleString()

.toLocaleUpperCase()

.toLowerCase()

.toString()

.toUpperCase()

.valueOf()

The output is organized into sections by object. The methods listed under each section are
defined as members of the prototype member, and every instance has these methods
available. For example, in the above example, a script can call,
"var string = new String(); string.concat(4)".

Functions available to scripts
This section is very similar to the above section. The only difference is that the objects
are not constructors, and cannot be called as functions. This section is simply a list of all
functions available to scripts. Some of these functions may be grouped into objects (as
with the SElib and Clib objects), although instances of these objects cannot be created as
in the above example. The output of this section looks something like the following:

362 ScriptEase ISDK/C 4.20

Functions available to scripts:
Blob
.get()
.put()
.size()
defined()
escape()
eval()
getArrayLength()
isFinite()
isNaN()
Math
.abs()
.acos()
.asin()
.atan()
.atan2()
.ceil()
.cos()
.E
.exp()
.floor()
.LN10
.LN2
.log()
.LOG10E
.LOG2E
.max()
.min()
.PI
.pow()
.random()
.round()
.sin()
.sqrt()
.SQRT1_2
.SQRT2
.tan()
Number
.MAX_VALUE
.MIN_VALUE
.NaN
.NEGATIVE_INFINITY
.POSITIVE_INFINITY
parseFloat()
parseInt()

Appendix I - Aboutopt.jse 363

SElib
.directory()
.dynamicLink()
.fullpath()
.getObjectProperties()
.inSecurity()
.interpret()
.interpretInNewThread()
.peek()
.poke()
.spawn()
.splitFilename()
.suspend()
setArrayLength()
String
.fromCharCode()
undefine()
unescape()
Win
.asm()
.windowList()

Note that both properties (i.e. Number.MAX_VALUE) and functions are represented in
this list. It is a complete list of everything made available to scripts, besides the functions
inherited through objects. For example, the .directory() item means that the user can
call the function SElib.directory(). Functions which are not part of an object are
simply called directly.

364 ScriptEase ISDK/C 4.20

Appendix II

Under the Hood
- Advanced Topics

Topic 1: What is a jseContext?
A number of users seem confused over what exactly a jseContext is. A jseContext is an
internal data structure that the API user passes to all API functions. It is a magic cookie to
the API user. The structure is actually a linked-list, so the pointer value can change over
time; this is why your wrapper functions are passed a jseContext, and they must use that
value when they make API calls. You cannot test jseContexts against one another by
direct pointer comparison.

Each jseContext can only be used by one thread at a time. If multiple threads need to be
running scripts simulataneously, each needs to create its own jseContext (using
jseInitializeExternalLink.) It is not enough to prevent task switching to try to overuse a
single context. The jseContext contains state information that cannot be intermixed.
However, you can successfully share jseContexts among tasks if only one thread uses it
at one time. For instance, a thread may grab a jseContext and do a jseInterpret() using it,
then when it is finished, give it to some other thread to do its own jseInterpret(). If both
try to do a jseInterpret() simulataneously you will crash.

You can associate data with a jseContext and then retrieve the data using
jseGetLinkData(). This allows you to differentiate contexts, even though you cannot
directly compare pointers.

Topic 2: Errors and Exceptions
Another point that needs clarifying is exception handling. An error and an exception are
the same thing. A ScriptEase wrapper function can generate an error using the
jseLibErrorPrintf() function. It is preferable to use the resource capabilities to generate
the error message, since then you do not have to worry about the format of the error
string. All of the standard library functions we provide have their error messages
generated this way, such as the standard ECMA functions in srclib/ecma/*.c. The file
srclib/common/setxtlib.h contains the resource definitions they use.

Appendix II - “Under the Hood” 365

If you need to generate an error message by hand, the format of the string passed to
jseLibErrorPrintf is:

!type number: message

For instance,
!SyntaxError 1000: You did something wrong.

Would generate an error of type 'SyntaxError' (one of a number of error types defined by
the ECMAScript Version 3 draft document), with number 1000 and the message 'You did
something wrong.' You can pass the string without the type specifier portion, in which
case you will get a generic error rather than a specific one (i.e. instead of being a
TypeError or a SyntaxError, it will just be an Error).

In Javascript, you can generate errors at runtime by 'throw'ing them. The equivelent of
the above error would be the statement:

throw new SyntaxError("1000: You did something
wrong.");

Normally, errors will cause the program to stop execution and print an the error message.
You can trap errors. In Javascript, you use the try/catch mechanism (see the manual for
details). The API allows you to trap errors that result from calls to jseInterpret() or
jseCallFunctionEx(). See the API references for how you do that.

The rule is straightforward: if you do not trap the error, the error is printed using your
error print routine defined in the jseExternalLinkParameters structure, and the function
returns failure. If you trap it, the function still notifies you of its failure, but the Error
object is returned as the result of the function. Normally, you wouldn't then print the
error, but you can do so by converting the error object to a string using the
jseCreateConvertedVariable() API call with the 'jseToString' conversion option.

Now that we now the basic mechanism, here a couple of tidbits of information you may
find interesting and helpful. First, you can throw any value, but normally you will want to
throw some kind of error object. In the handler, when you catch an error of some type,
the associated error object will be assigned to the variable you specify in the catch
handler. If you throw an error object, the variable will be an error object. If you throw
something else, the person's handler might get confused if it was expecting some kind of
error object. Exactly the same applies to the API, you may get a failed call, but the return
value is not an error object. In Javascript, you are allowed to have any value associated
with an error condition; you just normally make it an error object of some kind.

In wrapper functions, it is common to want to pass an error back up the chain. For
instance, the ECMA eval function wants any errors that it gets to be applied to the calling

366 ScriptEase ISDK/C 4.20

context. There is no trick to doing this. Call whatever function you want to trap the error.
Then, if you get an error, you can pass it up the chain by using jseReturnVar() on it.
You'll call jseLibSetErrorFlag() after to indicate that the return was an error. Exactly, like
we talked about above, we return some value and indicate that it is an error result.
jseLibErrorPrintf() is just a convenient function to handle the usual case of generating a
stock error from the ScriptEase API.

Topic 3: Jseinterpret And Scripts, Functions,
Variables, And Scoping

In order to support object-oriented programming, classes, executing scripts as children of
other scripts, and similar scoping issues, the options available to run scripts in the
ScriptEase: ISDK API can be confusing. This chapter will try to sort out the issues
involved.

Let's start with a stroll down memory-lane. Bear with me, it really is relevent! If you
recall your schooling days, in math class often you were expected to learn some formulas.
You plugged in the right numbers and got the answer. They seemed mysterious and
magical. But later, as you began to understand where the formulas came from, they didn't
seem so magical. When you got a problem that was different enough that no formula
worked exactly, you understood what was going on and could figure out how to use what
you did know to solve the problem.

The ScriptEase engine is exactly the same way. You can think of this chapter as giving
you some 'formulas' for the common tasks associated with loading and executing scripts
and determining variable scoping. However, it also explains how these 'formulas' work so
if you need to do something that isn't covered here exactly, you can figure out how to do
it. I encourage you to read this document several times to make sure you get it all.

Functions and the Global Variables
Let's start with the Javascript basic idea of the Global Object. The Global object is an
object that is special. Every jseContext has a single global object. This is the place where
global variables and functions are stored.

When you run a script using jseInterpret, all of its functions are parsed and stored as
members of the global object. It also actually runs the script code, we will get into that
part later. Remember, functions are just variables that happen to be able to be called as
functions. Since these functions are stored in the global variable, they overwrite any
functions or variables that are already there. Even after the script is finished executing,
the functions are left over. This leads us to point 1:

Appendix II - “Under the Hood” 367

Point One:
When a script is interpreted using jseInterpret(), any functions it defines remain in
the global object after it finishes.

This is a point that often confuses people. Some people mistakenly think that
jseInterpInit() is needed to get at the functions defined in a script. This is not true.
jseInterpInit() is only provided so that you can execute your script one statement at a time
under your program's control. It's use is probably unneeded for 99% of customers, as the
MayIContinue function (defined in the jseExternalLinkParameters structure) can do what
you need instead. In fact, there is NO functionality related to scoping that jseInterpInit()
has that cannot be done using jseInterpret(). If you are having problems getting your
functions and variables correctly visible, then your problem is not related to using the
'wrong' function. jseInterpret() is the correct one.

Point Two:
The difference between jseInterpret() and jseInterpInit() is only
important for controlling execution, not for affecting scoping.

If you need to run a script a statement at a time, perhaps only occassionally when your
application has time, or if you need to run multiple scripts simultaneously in a single
thread intermixing them, this is a job for jseInterpInit(). Scoping is not.

Interpreting Children
As I said, the functions and variables defined a script used by jseInterpret() hang around
when they are done. This is the default behavior of jseInterpret(). However, there are
other values you can pass in order to get different behavior. The ScriptEase API is very
flexible; no matter what behavior you want, you can get it with the right combination of
API calls and parameters.

You can think of a 'stock' call to jseInterpret to look like this:

result = jseInterpret(jsecontext,
"my script code",
NULL,
jseNewNone,
JSE_INTERPRET_DEFAULT,NULL,NULL);

As I talk about various alternatives, like 'adding' a flag, it is understood to be
modifications of the basic format given above. There are several fields that we will not be
discussing at all. If instead of giving script code, you opt to give a filename or

368 ScriptEase ISDK/C 4.20

precompiled bytecodes, that is independent of what we are talking about. All of the
scoping behavior applies the same to a script file or source code text or bytecodes. You
can read the API reference on jseInterpret() to learn more about it.

The default behavior is such that if you run a series of scripts, all the functions defined in
them will remain, with newer copies of functions of the same name taking precedence.
This may not be what you want. Let's start with a common case. You want to run a script
as a child, with its functions overwriting any existing functions, but only for that child.
When the child finishes up, you want its functions are variables to go away, and
everything that was there to begin with to remain.

To accomplish this, pass the NewContextSettings value of 'jseNewFunctions' to
jseInterpret() instead of jseNewNone. The name of the flag is historic. Nombas is
committed to backward compatibility whenever possible. That means that names of
certain functions and parameters are kept the same, even if we would give them a
different name today. The behavior is kept the same, or as close to what it used to do as
possible. In this case, at one time functions were kept separate from regular variables, and
this flag said we wanted to create a new set of functions for this interpret. That's basically
still what it does, hence the historic name.

Finding Existing Variables
Remember when I said there were two conceptual parts to interpreting a script? The first
is loading any functions. What about the second? The second part is to run any code in
the script. For instance,

 function foo()
 {
 Clib.printf("Hi there. Please make your selection.\n");
 }

 foo();

Is really two parts, creating the function foo(), then running the little snippet of code
'foo();'. All of the statements outside of any functions is the code to run. Often, if you are
using the script merely to define functions, there will be no code at all, since the point of
your script is just to define those functions. Running the code is pretty straightforward, it
runs whatever script you specified. Any variables the script defines will either stay or go
away when it is done just like any functions it defines. But what happens when it refers to
variables that it doesn't define, variables that already exist? How does that work? You get
to decide. A couple of other fields to jseInterpret() determine how the child views
variables that already exist. Consider the simple script:

Appendix II - “Under the Hood” 369

 var a = 10;
 var b = a;
 var c = d;

In this case, 'b' will obviously always be 10. 'a' will be 10 as well. As we just discussed,
whether or not 'a' remains 10 when the script finishes depends on whether you use
'jseNewNone' or 'jseNewFunctions' in your call to jseInterpret(). But, what about 'c'? It is
set to the value of 'd', but 'd' is not defined in this script. There are two possibilities, and
you get to decide which it is. Assuming that the variable 'd' was already defined by the
parent, either you want that 'd' to show up, or you want there to be an error because the
child script does not define 'd'. You need to decide whether or not the child gets to see the
variables of the parent. This is done with one of the 'HowToInterpret' flags, another
parameter to jseInterpret(). The flag JSE_INTERPRET_NO_INHERIT makes all the
difference here. If it is included, then any variable that existed is hidden from the child. If
it is not included, the child can see the old variables.

This flag only affects global variables. There can be times when you want the child to be
even more like the parent. For instance, the ECMAScript eval() function lets the child
inherit everything. If the parent was in the middle of a 'with' statement, those variables
are visible. If it is in a function, all of the function's locals are visible. If you want your
child to have access to everything the parent did, make sure the
JSE_INTERPRET_NO_INHERIT flag is not on, and pass your current context as the
'LocalVariableContext' parameter to jseInterpret(). The child script will get an exact copy
of the parent's scoping chain, and thus will see exactly the same variables that its parent
could.

One clarification. The context does not try to remember which variables have been
changed. New variables go away because they are created in a new place. If you access
an existing variable and change it, for instance by taking an existing object and adding a
new member, that will not go away. New variables go away, changes to existing
variables do not. I know this is a bit confusing. If the person can see one of the existing
variables, they can change it.

jseInterpret Context Settings
Because any script can always see the global object and its variables, you must change
the global object if you want to use JSE_INTERPRET_NO_INHERIT to completely hide
all existing variables from a child. Usually, you will use the new context settings of
'jseAllNew'. Since the ECMA libraries, ScriptEase predefined constants, and such are all
stored in the global object, you'll do this to initialize a new copy of them which the child
can use. This is basically equivelent to just initializing a whole new context, except that
you don't have to go through and respecify the libraries; the engine reinitializes all the
ones you've added.

370 ScriptEase ISDK/C 4.20

You can individually turn on each of the new context setting flags to reinitialize a
particular subset of the engine for the interpreted child. This is probably not very useful
and I will not get into it here. The flag jseNewSecurity is, however, quite useful. If it is
turned on, the security specified in the jseExternalLinkParameters structure (accessible
via the API function jseGetExternalLinkParameters) is used to add a new level of
security. You'll often want to apply additional security to a certain script you want to run,
and this is how you do it. See the security chapter for full details.

Mixing In One Call
Scoping for interpreting children is easy for you to figure out and implement. The child
runs and then finishes, and you only need decide what happens to its variables and
functions. Many applications will need a more complex situation. Browsers are a perfect
example. Functions need to be associated with certain objects and the variables they can
see set accordingly. Later on, all of the functions are going to be available at the same
time, but each must see its own particular variables. For instance, a function associated
with a form must see that form's variables, its containing document's variables, as well as
the variables in the containing window. In this case, we want to set up the particular
hiearchy of scoping and have it all be remembered so that whenever these functions are
run, they get the correct values.

Remember POINT ONE. Any functions defined by jseInterpret() stick around after
jseInterpret() goes away. This is what we want to happen, but we do not want all the
functions mashed togethor in the same place. We want the functions associated with the
form to go with the form, the functions associated with the window to go with the
window, and so forth. If we create the functions 'window.foo()' and
'window.document.forma.foo()', those are two different functions, so we obviously don't
want them overwriting each other. This is common with event handlers, as handlers with
the same name will be needed for different objects in the browser tree.

Changing The Global Object
In this case, we know that jseInterpret() will leave its functions hanging around in the
global object. If we want our functions to go in different places, obviously we are going
to need more than one global object. In fact, the 'jseNewFunctions' flag we looked at
previously just creates a new global object for the jseInterpret() and gets rid of it when it
is done.

Point Three:
The Global Object Can Be Changed!
By calling jseSetGlobalObject() and then calling jseInterpret(), we can determine where
the functions in that script go. If we interpret several scripts, each with their own global
object, the functions will get put into their own space. In the browser case we looked at
above, when we interpret the 'function foo()' that corresponds to

Appendix II - “Under the Hood” 371

'window.document.forma.foo', we look up 'window.document.forma', make that the
global object, then interpret the script. Then if we want to make the 'function foo()' that
corresponds just to 'window.foo', we need only swap 'window' back as our global object
and interpret again.

This new function goes in its new place, and the other one is also hanging around. Just
remember to use 'jseNewNone', as we will be setting exactly which global object we
want, so we don't want to then have jseInterpret() change it on us. The scoping is not
important, since we will typically be only using jseInterpret()s capability to create
functions. After the browser has set up all of its functions, it will later be calling them
using jseCallFunction(), or by running more scripts.

Sophisticated Scoping
By default, the ScriptEase compile-time define 'JSE_MULTIPLE_GLOBAL' is turned
on. This means whenever any function is run, the global object that was in effect when it
was created becomes the global object for the function. This is usually exactly what we
want. Continuing with the browser example, when the 'window.document.forma.foo()'
function is run, it should see all of the variables in 'forma' as if they were its globals.
When 'window.foo()' is run, it gets to see the variables in 'window'. But, you may notice,
it is more complex than just that. 'window.document.forma.foo()' actually is supposed see
the variables in 'window.document.forma' AND 'window.document' AND 'window'. All
of the variables in the containing object and all of its parents are supposed to visible.

How can we accomplish this? Well, we have a good start so far. By swapping in the
correct global, we get the 'first piece' visible. More importantly, we have made sure that if
the function creates any 'global' variables, they actually get stuck into their own little
place. Now, we want to make the whole chain we just discussed visible as well. The first
thing we need to do is chain the global variables togethor. We know that a form has a
document as its parent and that a document has a window as its parent, and so forth. We
need to tell ScriptEase that. We do this by making each object have an '__parent__'
property. This is done using the standard ScriptEase API.

For instance,
 jseVariable window; /* this is the ScriptEase variable
 associated with a window. */
 jseVariable document; /* This is a document inside the
 above window. */

 jseVariable tmp;

 tmp = jseMember(jsecontext,
 document,
 "__parent__",
 jseTypeUndefined);
 jseAssign(jsecontext,tmp,window);

372 ScriptEase ISDK/C 4.20

In our sample browser library, you'll notice this kind of thing going on a lot. Whenever a
particular object is created, it gets a number of child objects. The creation routine fetches
the child object, makes it one of its members, then sets the child object's "__parent__"
property to point to itself.

Great, we are almost there. The __parent__ chain is a runtime property, not a compile-
time one. What that means is that when a function is actually being run, only then does it
grab all the parents and make their variables visible. This is because which variables are
going to be visible will be determined by the 'this' variable that the function is actually
used on. In the browser example we have been doing, we can see what this value will be
at compile-time.

For instance, when we compile a function the function 'forma.foo', we are associating it
not with forms in general, but with the 'forma'. When we run it, such as with
'forma.foo()', the 'this' variable will obviously be 'forma'. But this is a specific case of a
more general ability in ScriptEase. Thus, the mechanism that we have added allows the
specific case to be done, but more general cases as well. We simply need to mark the
function with some function attributes needed to make them visible. You can see the API
reference for the ScriptEase function jseSetAttributes() for more information.

We want to mark the function as having the attributes 'jseImplicitThis' and
'jseImplicitParents'. jseImplicitThis means make all the varables in 'this' visible. In other
words, we can reference them directly instead of having to put a 'this.' in front of them.
jseImplicitParents is similar, except it allows the variables in the __parent__ to be seen in
the same way. That chain of __parent__ is followed until the end, so the parent's parent
and so forth are also visible. By setting up your parent chain and making your functions
jseImplicitParents, you can control exactly which variables you want visible in your
functions.

Observent readers will notice that 'this' and the global object are the same, so
jseImplicitThis seems unnecessary. Variables in the global object are always visible.
True, but the implicit this is seen before the implicit parents, while the global is seen
after. Since the browser programmer will expect the 'this' values to take precedence, we
include jseImplicitThis.

Again, there is no magic involved. To set the attributes, you retrieve the function you've
just created using jseGetMember() and set its attributes using jseSetAttributes().

What About Prototypes?
You've probably read the earlier section in our manual about dynamic objects and
prototypes and you may ask, why do I need all of this __parent__ stuff? Can't I just link
my objects togethor using the prototypes instead? The short answer is yes. However, for a

Appendix II - “Under the Hood” 373

browser, this is not enough. Prototypes are used to differentiate classes of objects. For
instance, all documents are of the same class, have the same functions available, and thus
get the same prototype object which has in it the functions for all documents.

The chain of parents, though, is different. Each document has a parent window, but not
all documents get the same parent. They are part of one chain for variable visibility in
which each document may have the same or a different window as its parent, while at the
same time all documents are still documents so have the same prototype. If we tried to
use the prototype chain alone to do both tasks, we just wouldn't get it to work. If your
application and object hiearchy are very simple, you may be able to use just the prototype
chain, but for most real applications, it makes sense to use each as it was intended.

Multithreading
Some people are confused about what a context is. A context is an internal data structure
used to track a single thread of execution. Multiple threads cannot use the same context.
If multiple threads wish to execute code simultaneously, each one will need to get its
context to work with using jseInitializeExternalLink. While it is possible to share data,
that is outside the scope of ScriptEase. The various data structures, such as contexts and
variables, cannot be shared by threads.

This is due to the problem of multiple threads trying to access the same data. Having a
semaphore to limit physical access to the underlying memory is not enough. If I am in a
function that converts a variable to an string then puts data into that variable, even though
each of those operations might be locked via semaphore, their combination in a sense is
atomic. If some other task changes the variable to a number in between the two steps, we
will get a crash.

If you must share data, my suggestion is to use dynamic _get and _put to access a shared
data structure, in which the _get and _put can do the appropriate sharing, perhaps via a
semaphore. Having two or more threads simultaneously accessing a ScriptEase data tree
is just not a realistic possibility. It could be done, in theory, but it would be no easy task.

jseInterpret Deprecations
jseInterpret() has been a staple API call for a while, and in our effort to ensure backward
compatibility, certain flags have stayed around that probably don't need to be. If you are
writing a new program, you may be looking at some of these flags and wondering why
they exist.

JSE_INTERPRET_LOAD - This flag used to be necessary to get the code to load into
the existing context. This has been superceeded what object becomes the global variable
as described above. The flag does nothing.

374 ScriptEase ISDK/C 4.20

jseNewGlobalObject - A context setting which is very similar to jseNewFunctions.
However, jseNewFunctions makes a few other changes under the hood to make sure its
functionality is as described. This flag probably shouldn't be used independently. Use it
only when you use jseInterpret() with 'jseAllNew' as its NewContextSettings. You are
probably better off just using a whole new context via jseInitializeExternalLink().

